Publications by authors named "Stephanie Deutscher"

Importance: The overall low survival rate of patients with lung cancer calls for improved detection tools to enable better treatment options and improved patient outcomes. Multivariable molecular signatures, such as blood-borne microRNA (miRNA) signatures, may have high rates of sensitivity and specificity but require additional studies with large cohorts and standardized measurements to confirm the generalizability of miRNA signatures.

Objective: To investigate the use of blood-borne miRNAs as potential circulating markers for detecting lung cancer in an extended cohort of symptomatic patients and control participants.

View Article and Find Full Text PDF

Blood-borne small non-coding (sncRNAs) are among the prominent candidates for blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker signatures. These have to be validated in larger cohorts and evaluated by adequate statistical learning approaches.

View Article and Find Full Text PDF

Background: Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples.

Results: We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels.

View Article and Find Full Text PDF

Background: Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared the miRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOP protocol 2001.

Results: We did not find a significant difference between miRNA signature of both groups.

View Article and Find Full Text PDF

To further understand the biological significance of amplifications for glioma development and recurrencies, we characterized amplicon frequency and size in low-grade glioma and amplicon stability in vivo in recurring glioblastoma. We developed a 12q13-21 amplicon-specific genomic microarray and a bioinformatics amplification prediction tool to analyze amplicon frequency, size, and maintenance in 40 glioma samples including 16 glioblastoma, 10 anaplastic astrocytoma, 7 astrocytoma WHO grade 2, and 7 pilocytic astrocytoma. Whereas previous studies reported two amplified subregions, we found a more complex situation with many amplified subregions.

View Article and Find Full Text PDF