Publications by authors named "Stephanie Deasey"

Objective: In vitro, transglutaminase-2 (TG2)-mediated activation of the β-catenin signaling pathway is central in warfarin-induced calcification, warranting inquiry into the importance of this signaling axis as a target for preventive therapy of vascular calcification in vivo.

Methods And Results: The adverse effects of warfarin-induced elastocalcinosis in a rat model include calcification of the aortic media, loss of the cellular component in the vessel wall, and isolated systolic hypertension, associated with accumulation and activation of TG2 and activation of β-catenin signaling. These effects of warfarin can be completely reversed by intraperitoneal administration of the TG2-specific inhibitor KCC-009 or dietary supplementation with the bioflavonoid quercetin, known to inhibit β-catenin signaling.

View Article and Find Full Text PDF

Of the eight catalytic transglutaminases (TGs), transglutaminase 2 (TG2) has been the most comprehensively studied due to its ubiquitous expression in multiple cell types. Despite the observed critical role for this enzyme in multiple biological processes in vitro, TG2 knockout mouse models have shown no severe developmental phenotypes, suggesting compensation by other TGs. To begin characterization of the compensating mechanisms, we analyzed total transamidating activity and expression patterns of all catalytically active TGs in seven different tissues/organs from wild-type and TG2 knockout mice.

View Article and Find Full Text PDF

Objective: Accumulating experimental evidence implicates β-catenin signaling and enzyme transglutaminase 2 (TG2) in the progression of vascular calcification, and our previous studies have shown that TG2 can activate β-catenin signaling in vascular smooth muscle cells (VSMCs). Here we investigated the role of the TG2/β-catenin signaling axis in vascular calcification induced by warfarin.

Methods And Results: Warfarin-induced calcification in rat A10 VSMCs is associated with the activation of β-catenin signaling and is independent of oxidative stress.

View Article and Find Full Text PDF

We have characterized the protein cross-linking enzyme transglutaminase (TGs) genes in zebrafish, Danio rerio, based on the analysis of their genomic organization and phylogenetics. Thirteen zebrafish TG genes (zTGs) have been identified, of which 11 show high homology to only 3 mammalian enzymes: TG1, TG2 and FXIIIa. No zebrafish homologues were identified for mammalian TGs 3-7.

View Article and Find Full Text PDF

The expression pattern for tissue transglutaminase (TG2) suggests that it regulates cartilage formation. We analyzed the role of TG2 in early stages of chondrogenesis using differentiating high-density cultures of mesenchymal cells from chicken limb bud as a model. We demonstrate that TG2 promotes cell differentiation towards a pre-hypertrophic stage without inducing precocious hypertrophic maturation.

View Article and Find Full Text PDF