MOV10 is an RNA helicase required for organismal development and is highly expressed in postnatal brain. MOV10 is an AGO2-associated protein that is also necessary for AGO2-mediated silencing. AGO2 is the primary effector of the miRNA pathway.
View Article and Find Full Text PDFFragile X syndrome results from the loss of expression of the Fragile X Mental Retardation Protein (FMRP). FMRP and RNA helicase Moloney Leukemia virus 10 (MOV10) are important Argonaute (AGO) cofactors for miRNA-mediated translation regulation. We previously showed that MOV10 functionally associates with FMRP.
View Article and Find Full Text PDFMOV10 is an RNA helicase that associates with the RNA-induced silencing complex component Argonaute (AGO), likely resolving RNA secondary structures. MOV10 also binds the Fragile X mental retardation protein to block AGO2 binding at some sites and associates with UPF1, a principal component of the nonsense-mediated RNA decay pathway. MOV10 is widely expressed and has a key role in the cellular response to viral infection and in suppressing retrotransposition.
View Article and Find Full Text PDFThe Fragile X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation and is required for normal cognition. FMRP upregulates and downregulates the activity of microRNA (miRNA)-mediated silencing in the 3' UTR of a subset of mRNAs through its interaction with RNA helicase Moloney leukemia virus 10 (MOV10). This bi-functional role is modulated through RNA secondary structures known as G-Quadruplexes.
View Article and Find Full Text PDFJ Commun Disord
August 2019
This tutorial provides professionals in communication sciences and disorders with an overview of the molecular basis and parental perceptions of genetic testing as associated with autism. The introduction notes the prominence of genetic testing within present-day medical practices and highlights related limitations and concerns through the lens of disability critique. The body of the tutorial provides an overview of four different forms of genetic variation, highlighting the potential associations with autism and available genetic testing.
View Article and Find Full Text PDFBackground: Mov10 is an RNA helicase that modulates access of Argonaute 2 to microRNA recognition elements in mRNAs. We examined the role of Mov10 in Xenopus laevis development and show a critical role for Mov10 in gastrulation and in the development of the central nervous system (CNS).
Results: Knockdown of maternal Mov10 in Xenopus embryos using a translation blocking morpholino led to defects in gastrulation and the development of notochord and paraxial mesoderm, and a failure to neurulate.
Background: Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse.
View Article and Find Full Text PDFMicroRNAs act by post-transcriptionally regulating the gene expression of 30%-60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation.
View Article and Find Full Text PDFThe fragile X mental retardation protein FMRP regulates translation of its bound mRNAs through incompletely defined mechanisms. FMRP has been linked to the microRNA pathway, and we show here that it associates with the RNA helicase MOV10, also associated with the microRNA pathway. FMRP associates with MOV10 directly and in an RNA-dependent manner and facilitates MOV10's association with RNAs in brain and cells, suggesting a cooperative interaction.
View Article and Find Full Text PDFWe begin by reviewing the first characterization of fragile X syndrome, which ultimately led to cloning of the FMR1 gene. Discovery of the molecular basis of this disorder, including expansion of a trinucleotide repeat, gave insight not only into fragile X syndrome but also into the premutation syndromes. Features of fragile X syndrome are discussed including the patient phenotype down to the neuronal phenotype.
View Article and Find Full Text PDFArginine methylation is a post-translational modification that regulates protein function. RNA-binding proteins are an important class of cell-function mediators, some of which are methylated on arginine. Early studies of RNA-binding proteins and arginine methylation are briefly introduced, and the enzymes that mediate this post-translational modification are described.
View Article and Find Full Text PDFResults Probl Cell Differ
February 2012
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and presents with markedly atypical speech-language, likely due to impaired vocal learning. Although current models have been useful for studies of some aspects of FXS, zebra finch is the only tractable lab model for vocal learning. The neural circuits for vocal learning in the zebra finch have clear relationships to the pathways in the human brain that may be affected in FXS.
View Article and Find Full Text PDFThe fragile X family of genes encodes a small family of RNA binding proteins including FMRP, FXR1P and FXR2P that were identified in the 1990s. All three members are encoded by 17 exons and show alternative splicing at the 3' ends of their respective transcripts. They share significant homology in the protein functional domains, including the Tudor domains, the nuclear localization sequence, a protein-protein interaction domain, the KH1 and KH2 domains and the nuclear export sequence.
View Article and Find Full Text PDFFragile X mental retardation protein (FMRP) is required for normal cognition. FMRP has two autosomal paralogs, which although similar to FMRP, cannot compensate for the loss of FMRP expression in brain. The arginine- and glycine-rich region of FMRP (the RGG box) is unique; it is the high-affinity RNA-binding motif in FMRP and is encoded by exon 15.
View Article and Find Full Text PDFMicroRNAs are members of the non-protein-coding family of RNAs. They serve as regulators of gene expression by modulating the translation and/or stability of messenger RNA targets. The discovery of microRNAs has revolutionized the field of cell biology, and has permanently altered the prevailing view of a linear relationship between gene and protein expression.
View Article and Find Full Text PDFFXR1P is one of two autosomal paralogs of the fragile X mental retardation protein FMRP. The absence of FMRP causes fragile X syndrome, the leading cause of hereditary mental retardation. FXR1P plays an important role in normal muscle development and has been implicated in facioscapulohumeral muscular dystrophy (FSHD).
View Article and Find Full Text PDFFragile X syndrome is caused by the loss of expression of the fragile X mental retardation protein, FMRP. FMRP is an RNA-binding protein that is highly expressed in neurons and undergoes multiple post-translational modifications including methylation on arginine. FMRP is methylated on the high-affinity RNA-binding motif, the RGG box, at positions 533, 538, 543 and 545 of murine FMRP.
View Article and Find Full Text PDFSmall, genomically-encoded microRNAs are important factors in the regulation of mRNA translation. Although their biogenesis is relatively well-defined, it is still unclear how they are recruited to their mRNA targets. The fragile X mental retardation protein family members, FMRP, FXR1P and FXR2P are RNA binding proteins that regulate translation of their cargo mRNAs.
View Article and Find Full Text PDFFragile X syndrome is caused by an absence of the protein product of the fragile X mental retardation gene (FMR1). The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates translation of associated mRNAs; however, the mechanism for this regulation remains unknown. Constitutively, phosphorylated FMRP (P-FMRP) is found associated with stalled untranslating polyribosomes, and translation of at least one mRNA is down-regulated when FMRP is phosphorylated.
View Article and Find Full Text PDFThe fragile X mental retardation protein FMRP is an RNA binding protein that associates with a large collection of mRNAs. Since FMRP was previously shown to be a nucleocytoplasmic shuttling protein, we examined the hypothesis that FMRP binds its cargo mRNAs in the nucleus. The enhanced green fluorescent protein-tagged FMRP construct (EGFP-FMRP) expressed in Cos-7 cells was efficiently exported from the nucleus in the absence of its nuclear export sequence and in the presence of a strong nuclear localization sequence (the simian virus 40 [SV40] NLS), suggesting an efficient mechanism for nuclear export.
View Article and Find Full Text PDFFragile X syndrome is a common form of cognitive deficit caused by the functional absence of fragile X mental retardation protein (FMRP), a dendritic RNA-binding protein that represses translation of specific messages. Although FMRP is phosphorylated in a group I metabotropic glutamate receptor (mGluR) activity-dependent manner following brief protein phosphatase 2A (PP2A)-mediated dephosphorylation, the kinase regulating FMRP function in neuronal protein synthesis is unclear. Here we identify ribosomal protein S6 kinase (S6K1) as a major FMRP kinase in the mouse hippocampus, finding that activity-dependent phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of rapamycin (mTOR), ERK1/2, and PP2A.
View Article and Find Full Text PDFFragile X syndrome is a common form of inherited mental retardation and is caused by loss of fragile X mental retardation protein (FMRP), a selective RNA-binding protein that influences the translation of target messages. Here, we identify protein phosphatase 2A (PP2A) as an FMRP phosphatase and report rapid FMRP dephosphorylation after immediate group I metabotropic glutamate receptor (mGluR) stimulation (<1 min) in neurons caused by enhanced PP2A enzymatic activity. In contrast, extended mGluR activation (1-5 min) resulted in mammalian target of rapamycin (mTOR)-mediated PP2A suppression and FMRP rephosphorylation.
View Article and Find Full Text PDFFragile X syndrome is the most common form of inherited mental retardation and is caused by the absence of expression of the FMR1 gene. The protein encoded by this gene, Fmrp, is an RNA-binding protein that binds a subset of mRNAs and regulates their translation, leading to normal cognitive function. Although the association with RNAs is well established, it is still unknown how Fmrp finds and assembles with its RNA cargoes and how these activities are regulated.
View Article and Find Full Text PDFFragile X syndrome is caused by a loss of expression of the fragile X mental retardation protein (FMRP). FMRP is a selective RNA-binding protein which forms a messenger ribonucleoprotein (mRNP) complex that associates with polyribosomes. Recently, mRNA ligands associated with FMRP have been identified.
View Article and Find Full Text PDFFragile X mental retardation protein, FMRP, is absent in patients with fragile X syndrome, a common form of mental retardation. FMRP is a nucleocytoplasmic RNA binding protein that is primarily associated with polyribosomes. FMRP is believed to be a translational repressor and may regulate the translation of certain mRNAs at the base of dendritic spines in neurons.
View Article and Find Full Text PDF