Background: Metabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles.
View Article and Find Full Text PDFNodular hyperplasia of the Bartholin's gland is an underreported and extremely rare entity that presents as a solid lesion potentially raising concern for malignancy clinically, most solid lesions at this location are carcinomas. They may also be mistaken for a Bartholin cyst clinically. Nodular hyperplasia is rarer than carcinoma of the Bartholin gland, and hence pathologists may not be familiar with this entity, making it a pitfall in pathologic as well as a clinical diagnosis.
View Article and Find Full Text PDFSurgical correction is considered in women with symptomatic pelvic organ prolapse (POP). There is an expected increase in the prevalence of surgical correction due to an aging population within the United States. Individuals with previous colorectal surgery present a unique challenge considering the changes in pelvic anatomy.
View Article and Find Full Text PDFInhibitors that block the programmed cell death-1 (PD-1) pathway can potentiate endogenous antitumor immunity and have markedly improved cancer survival rates across a broad range of indications. However, these treatments work for only a minority of patients. The efficacy of anti-PD-1 inhibitors may be extended by cytokines, however, the incorporation of cytokines into therapeutic regimens has significant challenges.
View Article and Find Full Text PDFPurpose To report on skin tumor treatment with surface mould brachytherapy at our institution. Methods This was a retrospective review for all patients with skin tumors treated using Ir-192 high dose rate (HDR) surface mould brachytherapy from January 1, 2010 to December 31, 2017 in British Columbia. We identified 65 lesions (59 patients).
View Article and Find Full Text PDFWe report on the treatment of a Basal Cell Carcinoma of the skin with high-dose-rate (HDR) brachytherapy using a 3D-printed surface mold. The lesion was treated with 40 Gy in 10 fractions, administered every second day. The treatment was well tolerated and there were no significant toxicities.
View Article and Find Full Text PDFThe MYC proto-oncogene is a gene product that coordinates the transcriptional regulation of a multitude of genes that are essential to cellular programs required for normal as well as neoplastic cellular growth and proliferation, including cell cycle, self-renewal, survival, cell growth, metabolism, protein and ribosomal biogenesis, and differentiation. Here, we propose that MYC regulates these programs in a manner that is coordinated with a global influence on the host immune response. MYC had been presumed to contribute to tumorigenesis through tumor cell-intrinsic influences.
View Article and Find Full Text PDFCancers are often initiated by genetic events that activate proto-oncogenes or inactivate tumor-suppressor genes. These events are also crucial for sustained tumor cell proliferation and survival, a phenomenon described as oncogene addiction. In addition to this cell-intrinsic role, recent evidence indicates that oncogenes also directly regulate immune responses, leading to immunosuppression.
View Article and Find Full Text PDFPurpose: Non-melanotic skin cancers remain the most commonly diagnosed cancers. Radiotherapy and surgery are the most common treatment options. Radiotherapy has a recurrence rate of up to 20% for basal or squamous cell cancers.
View Article and Find Full Text PDFThe MYC oncogene codes for a transcription factor that is overexpressed in many human cancers. Here we show that MYC regulates the expression of two immune checkpoint proteins on the tumor cell surface: the innate immune regulator CD47 (cluster of differentiation 47) and the adaptive immune checkpoint PD-L1 (programmed death-ligand 1). Suppression of MYC in mouse tumors and human tumor cells caused a reduction in the levels of CD47 and PD-L1 messenger RNA and protein.
View Article and Find Full Text PDFTargeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.
View Article and Find Full Text PDFWe present a detailed response to the critique of "State of the Science of Endocrine Disrupting Chemicals 2012" (UNEP/WHO, 2013) by financial stakeholders, authored by Lamb et al. (2014). Lamb et al.
View Article and Find Full Text PDFLifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis.
View Article and Find Full Text PDFPotentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment.
View Article and Find Full Text PDFThe MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC.
View Article and Find Full Text PDFCancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity.
View Article and Find Full Text PDFSteroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR), are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints.
View Article and Find Full Text PDFMYC regulates tumorigenesis by coordinating the expression of thousands of genes. We found that MYC appears to regulate the decisions between cell survival versus death and self-renewal versus senescence through the microRNA miR-17-92 cluster. Addiction to the MYC oncogene may therefore in fact be an addiction to miR-17-92.
View Article and Find Full Text PDFCancers due to germline mutations in the BRCA1 gene tend to lack targets for approved chemoprevention agents. This study aimed at a targeted chemoprevention strategy for BRCA1-associated malignancies. Mutant BRCA1 limits the base-excision DNA repair activity that addresses oxidative DNA damage, the accumulation of which heightens one's risk for cancer.
View Article and Find Full Text PDFThe Cre/loxP system is a powerful tool for generating conditional genomic recombination and is often used to examine the mechanistic role of specific genes in tumorigenesis. However, Cre toxicity due to its non-specific endonuclease activity has been a concern. Here, we report that tamoxifen-mediated Cre activation in vivo induced the regression of primary lymphomas in p53-/- mice.
View Article and Find Full Text PDFThe MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim.
View Article and Find Full Text PDFJ Immunother Cancer
August 2014
The targeted inactivation of a single oncogene can induce dramatic tumor regression, suggesting that cancers are "oncogene addicted." Tumor regression following oncogene inactivation has been thought to be a consequence of restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and cellular senescence. However, recent observations illustrate that oncogene addiction is highly dependent upon the host immune cells.
View Article and Find Full Text PDFTumors are genetically complex and can have a multitude of mutations. Consequently, it is surprising that the suppression of a single oncogene can result in rapid and sustained tumor regression, illustrating the concept that cancers are often "oncogene addicted." The mechanism of oncogene addiction has been presumed to be largely cell autonomous as a consequence of the restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and/or cellular senescence.
View Article and Find Full Text PDF