Publications by authors named "Stephanie C Gantz"

The activation of autonomic and hypothalamo-pituitary-adrenal (HPA) systems occurs interdependently with behavioral adjustments under varying environmental demands. Nevertheless, laboratory rodent studies examining the neural bases of stress responses have generally attributed increments in these systems to be monolithic, regardless of whether an active or passive coping strategy is employed. Using the shock probe defensive burying test (SPDB) to measure stress-coping features naturalistically in male and female rats, we identify a neural pathway whereby activity changes may promote distinctive response patterns of hemodynamic and HPA indices typifying active and passive coping phenotypes.

View Article and Find Full Text PDF

In the central nervous system, noradrenaline transmission controls the degree to which we are awake, alert, and attentive. Aberrant noradrenaline transmission is associated with pathological forms of hyper- and hypo-arousal that present in numerous neuropsychiatric disorders often associated with dysfunction in serotonin transmission. In vivo, noradrenaline regulates the release of serotonin because noradrenergic input drives the serotonin neurons to fire action potentials via activation of excitatory α1-adrenergic receptors (α1-A).

View Article and Find Full Text PDF

Psychiatric and obstetric diseases are growing threats to public health and share high rates of co-morbidity. G protein-coupled receptor signaling (e.g.

View Article and Find Full Text PDF

In this article, we review contemporary evidence that GluD receptors are functional ion channels whose depolarizing currents contribute to their biological functions, akin to all other members of the ionotropic glutamate receptor (iGluR) family.

View Article and Find Full Text PDF

Ion channel function of native delta glutamate receptors (GluD ) is incompletely understood. Previously, we and others have shown that activation of Gαq protein-coupled receptors (GqPCR) produces a slow inward current carried by GluD1 . GluD1 also carries a tonic cation current of unknown cause.

View Article and Find Full Text PDF

Activity of dorsal raphe neurons is controlled by noradrenaline afferents. In this brain region, noradrenaline activates Gα-coupled α1-adrenergic receptors (α1-A), causing action potential (AP) firing and serotonin release. , electrical stimulation elicits vesicular noradrenaline release and subsequent activation of α1-A to produce an EPSC (α1-A-EPSC).

View Article and Find Full Text PDF

Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (I) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify I during the cardiac cycle in mouse SAMs.

View Article and Find Full Text PDF

Ultrapotent chemogenetics, including the chloride-permeable inhibitory PSAM-GlyR receptor, were recently proposed as a powerful strategy to selectively control neuronal activity in awake, behaving animals. We aimed to validate the inhibitory function of PSAM-GlyR in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the ventral striatum. Activation of PSAM-GlyR with the uPSEM ligand enhanced rather than suppressed the activity of D1-MSNs in vivo as indicated by increased c-fos expression in D1-MSNs and in vitro as indicated by cell-attached recordings from D1-MSNs in mouse brain slices.

View Article and Find Full Text PDF

The dorsal raphe nucleus is the predominant source of central serotonin, where neuronal activity regulates complex emotional behaviors. Action potential firing of serotonin dorsal raphe neurons is driven via α1-adrenergic receptors (α1-A) activation. Despite this crucial role, the ion channels responsible for α1-A-mediated depolarization are unknown.

View Article and Find Full Text PDF

Electrical or optogenetic stimulation of lateral hypothalamic (LH) GABA neurons induces rapid vigorous eating in sated animals. The dopamine system has been implicated in the regulation of feeding. Previous work has suggested that a subset of LH GABA neurons projects to the ventral tegmental area (VTA) and targets GABA neurons, inhibiting them and thereby disinhibiting dopaminergic activity and release.

View Article and Find Full Text PDF

Cocaine exposure induces persistent changes in synaptic transmission and intrinsic properties of ventral tegmental area (VTA) dopamine neurons. Despite significant progress in understanding cocaine-induced plasticity, an effective treatment of cocaine addiction is lacking. Chronic cocaine potentiates excitatory and alters inhibitory transmission to dopamine neurons, induces dopamine neuron hyperexcitability, and reduces dopamine release in projection areas.

View Article and Find Full Text PDF

In recent years, the population of neurons in the ventral tegmental area (VTA) and substantia nigra (SN) has been examined at multiple levels. The results indicate that the projections, neurochemistry, and receptor and ion channel expression in this cell population vary widely. This review centers on the intrinsic properties and synaptic regulation that control the activity of dopamine neurons.

View Article and Find Full Text PDF

The major endocannabinoid in the mammalian brain is the bioactive lipid 2-arachidonoylglycerol (2-AG). The best-known effects of 2-AG are mediated by G-protein-coupled cannabinoid receptors. In principle, 2-AG could modify neuronal excitability by acting directly on ion channels, but such mechanisms are poorly understood.

View Article and Find Full Text PDF

D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood.

View Article and Find Full Text PDF

Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices.

View Article and Find Full Text PDF

Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) affect many physiological processes by modulating both intrinsic membrane conductances and synaptic transmission. This study describes spontaneous miniature inhibitory postsynaptic currents mediated by vesicular dopamine release acting locally on metabotropic D2 receptors leading to the activation of a G protein-coupled inwardly rectifying potassium conductance. Thus, individual exocytotic events result in spontaneous GPCR-mediated transmission, similar to synaptic activation of classical ligand-gated ion channels.

View Article and Find Full Text PDF

Mutations in the methyl-CpG-binding protein 2 (MeCP2) result in Rett syndrome (RTT), an X-linked disorder that disrupts neurodevelopment. Girls with RTT exhibit motor deficits similar to those in Parkinson's disease, suggesting defects in the nigrostriatal pathway. This study examined age-dependent changes in dopamine neurons of the substantia nigra (SN) from wild-type, presymptomatic, and symptomatic Mecp2(+/-) mice.

View Article and Find Full Text PDF

Midbrain dopamine neurons release dopamine from both axons and dendrites. The mechanism underlying release at these different sites has been proposed to differ. This study used electrochemical and electrophysiological methods to compare the time course and calcium dependence of somatodendritic dopamine release in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) to that of axonal dopamine release in the dorsal striatum.

View Article and Find Full Text PDF

Dopamine neurons in the ventral midbrain contribute to learning and memory of natural and drug-related rewards. Corticotropin-releasing factor (CRF), a stress-related peptide, is thought to be involved in aspects of relapse following drug withdrawal, but the cellular actions are poorly understood. This study investigates the action of CRF on G-protein-linked inhibitory postsynaptic currents (IPSCs) mediated by GIRK (Kir3) channels in dopamine neurons.

View Article and Find Full Text PDF