Publications by authors named "Stephanie Bringer"

Gene expression in the obligately aerobic acetic acid bacterium responds to oxygen limitation, but the regulators involved are unknown. In this study, we analyzed a transcriptional regulator named GoxR (GOX0974), which is the only member of the fumarate-nitrate reduction regulator (FNR) family in this species. Evidence that GoxR contains an iron-sulfur cluster was obtained, suggesting that GoxR functions as an oxygen sensor similar to FNR.

View Article and Find Full Text PDF

The obligatory aerobic acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources regio- and stereoselectively in the periplasm and therefore is used industrially for oxidative biotransformations, e. g., in vitamin C production.

View Article and Find Full Text PDF

Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner-Doudoroff pathway (EDP) and the pentose phosphate pathway (PPP).

View Article and Find Full Text PDF

The obligatory aerobic α-proteobacterium Gluconobacter oxydans 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of G.

View Article and Find Full Text PDF

An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation.

View Article and Find Full Text PDF
Article Synopsis
  • An ultra-high-throughput screening system was developed to analyze NADPH-dependent enzymes, specifically targeting stereospecific alcohol dehydrogenases.
  • It uses the SoxR regulator from E. coli, which helps increase the expression of the soxS gene when NADPH levels are low, allowing for the monitoring of enzyme activity based on fluorescence.
  • This system successfully facilitated the sorting of E. coli cells expressing different levels of alcohol dehydrogenase activity and demonstrated its effectiveness by screening a mutant library for variants with enhanced activity against a specific substrate.
View Article and Find Full Text PDF

The obligatory aerobic acetic acid bacterium Gluconobacter oxydans oxidizes a variety of substrates in the periplasm by membrane-bound dehydrogenases, which transfer the reducing equivalents to ubiquinone. Two quinol oxidases, cytochrome bo3 and cytochrome bd, then catalyze transfer of the electrons from ubiquinol to molecular oxygen. In this study, mutants lacking either of these terminal oxidases were characterized.

View Article and Find Full Text PDF

In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate.

View Article and Find Full Text PDF

Glucose catabolism by the obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H proceeds in two phases comprising rapid periplasmic oxidation of glucose to gluconate (phase I) and oxidation of gluconate to 2-ketogluconate or 5-ketogluconate (phase II). Only a small amount of glucose and part of the gluconate is taken up into the cells. To determine the roles of the pentose phosphate pathway (PPP) and the Entner-Doudoroff pathway (EDP) for intracellular glucose and gluconate catabolism, mutants defective in either the PPP (Δgnd, Δgnd zwf*) or the EDP (Δedd-eda) were characterized under defined conditions of pH 6 and 15 % dissolved oxygen.

View Article and Find Full Text PDF

In this study, the potential of Corynebacterium glutamicum for reductive whole-cell biotransformation is shown. The NADPH-dependent reduction of the prochiral methyl acetoacetate (MAA) to the chiral (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis (Lbadh) was used as model reaction and glucose served as substrate for the regeneration of NADPH. Since NADPH is mainly formed in the oxidative branch of the pentose phosphate pathway (PPP), C.

View Article and Find Full Text PDF

The obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H oxidizes sugars and sugar alcohols primarily in the periplasm, and only a small fraction is metabolized in the cytoplasm. The latter can occur either via the Entner-Doudoroff pathway (EDP) or via the pentose phosphate pathway (PPP). The Embden-Meyerhof pathway is nonfunctional, and a cyclic operation of the tricarboxylic acid cycle is prevented by the absence of succinate dehydrogenase.

View Article and Find Full Text PDF

The genome-wide transcriptional responses of the strictly aerobic α-proteobacterium Gluconobacter oxydans 621H to oxygen limitation, to the absence of the cytochrome bc(1) complex, and to low pH were studied using DNA microarray analyses. Oxygen limitation caused expression changes of 486 genes, representing 20% of the chromosomal genes. Genes with an increased mRNA level included those for terminal oxidases, the cytochrome bc(1) complex, transhydrogenase, two alcohol dehydrogenases, heme biosynthesis, PTS proteins, proteins involved in cyclic diGMP synthesis and degradation, two sigma factors, flagella and chemotaxis proteins, several stress proteins, and a putative exporter protein.

View Article and Find Full Text PDF

Optimization of yields and productivities in reductive whole-cell biotransformations is an important issue for the industrial application of such processes. In a recent study with Escherichia coli, we analyzed the reduction of the prochiral β-ketoester methyl acetoacetate by an R-specific alcohol dehydrogenase (ADH) to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) using glucose as substrate for the generation of NADPH. Deletion of the phosphofructokinase gene pfkA almost doubled the yield to 4.

View Article and Find Full Text PDF

A basic requirement for the efficiency of reductive whole-cell biotransformations is the reducing capacity of the host. Here, the pentose phosphate pathway (PPP) was applied for NADPH regeneration with glucose as the electron-donating co-substrate using Escherichia coli as host. Reduction of the prochiral β-keto ester methyl acetoacetate to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) served as a model reaction, catalyzed by an R-specific alcohol dehydrogenase.

View Article and Find Full Text PDF

Gluconobacter oxydans N44-1, an obligatory aerobic acetic acid bacterium, oxidizes glucose primarily in the periplasm to the end products 2-ketogluconate and 2,5-diketogluconate, with intermediate formation of gluconate. Only a minor part of the glucose (less than 10%) is metabolized in the cytoplasm after conversion to gluconate or after phosphorylation to glucose-6-phosphate via the only functional catabolic routes, the pentose phosphate pathway and the Entner-Doudoroff pathway. This unusual method of glucose metabolism results in a low growth yield.

View Article and Find Full Text PDF

The highly productive whole-cell biotransformation of D-fructose to D-mannitol with recombinant, resting cells of Escherichia coli BL21(DE3) requires the combined expression of mdh, fdh and glf which encode mannitol and formate dehydrogenases and a sugar facilitator, respectively. However, long-term stability of the system was restricted, possibly due to loss of the cofactor NAD, high concentrations of formate, formation of CO(2) affecting the internal pH of the cells, accumulation of high intracellular concentrations of D-mannitol, and export of D-mannitol. Downstream of the mdh gene of Leuconostoc pseudomesenteroides, we identified an open reading frame encoding for a putative mannitol permease.

View Article and Find Full Text PDF

Reduction of D-fructose to D-mannitol by whole-cell biotransformation with recombinant resting cells of Corynebacterium glutamicum ATCC13032 requires the coexpression of mdh and fdh, which encode mannitol and formate dehydrogenases, respectively. However, d-mannitol formation is limited by the uptake of d-fructose in its unphosphorylated form, because additional expression of the sugar facilitator from Zymomonas mobilis resulted in a significantly increased productivity. Here we identified similarities of the myo-inositol transporters IolT1 and IolT2 of C.

View Article and Find Full Text PDF