Numerous studies exploring oncogenic Ras or manipulating physiological Ras signalling have established an irrefutable role for Ras as driver of cell cycle progression. Despite this wealth of information the precise signalling timeline and effectors engaged by Ras, particularly during G1, remain obscure as approaches for Ras inhibition are slow-acting and ill-suited for charting discrete Ras signalling episodes along the cell cycle. We have developed an approach based on the inducible recruitment of a Ras-GAP that enforces endogenous Ras inhibition within minutes.
View Article and Find Full Text PDFH16 produces and mobilizes (re-utilizes) intracellular polyhydroxybutyrate (PHB) granules during growth. This protocol describes the visualization of intracellular Nile red stained PHB granules and the quantification of PHB by gas chromatography. Our first method describes how to analyze PHB granules by fluorescence microscopy qualitatively.
View Article and Find Full Text PDFThe formation and localization of polyhydroxybutyrate (PHB) granules in are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by and methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated.
View Article and Find Full Text PDFExtended spectrum of β-lactam (ESBL) resistance of Klebsiella pneumoniae has become an increasing problem in hospital infections. Typing of isolates is important to establish the intrahospital surveillance of resistant clones. In this study, the discriminatory potential of randomly amplified polymorphic DNA and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analyses were compared with multilocus sequence typing (MLST) by using 17 β-lactam-resistant K.
View Article and Find Full Text PDF