Front Cell Infect Microbiol
June 2021
is an obligate intracellular pathogen and the causative agent of the zoonotic disease Q fever. Following uptake by alveolar macrophages, the pathogen replicates in an acidic phagolysosomal vacuole, the -containing vacuole (CCV). Effector proteins translocated into the host cell by the type IV secretion system (T4SS) are important for the establishment of the CCV.
View Article and Find Full Text PDFABSRTACT Coxiella burnetii is an obligate intracellular bacterium that causes Query (Q) fever, a zoonotic disease. It requires a functional type IV secretion system (T4SS) which translocate bacterial effector proteins into the host cell cytoplasm and thereby facilitates bacterial replication. To date, more than 130 effector proteins have been identified, but their functions remain largely unknown.
View Article and Find Full Text PDFThe technique presented here allows one to analyze at which step a target protein, or alternatively a small molecule, interacts with the components of a signaling pathway. The method is based, on the one hand, on the inducible expression of a specific protein to initiate a signaling event at a defined and predetermined step in the selected signaling cascade. Concomitant expression, on the other hand, of the gene of interest then allows the investigator to evaluate if the activity of the expressed target protein is located upstream or downstream of the initiated signaling event, depending on the readout of the signaling pathway that is obtained.
View Article and Find Full Text PDFIntracellular bacterial pathogens frequently inhibit host cell apoptosis to ensure survival of their host, thereby allowing bacterial propagation. The obligate intracellular pathogen Coxiella burnetii displays antiapoptotic activity which depends on a functional type IV secretion system (T4SS). Accordingly, antiapoptotic T4SS effector proteins, like AnkG, have been identified.
View Article and Find Full Text PDFStreptococcus pneumoniae protects itself from components of the human immune defense system by a thick polysaccharide capsule, which in most serotypes is covalently attached to the cell wall peptidoglycan. Members of the LytR-Cps2A-Psr (LCP) protein family have recently been implicated in the attachment of anionic polymers to peptidoglycan in Gram-positive bacteria, based on genetic evidence from Bacillus subtilis mutant strains and on the crystal structure of S. pneumoniae Cps2A containing a tightly bound polyprenol (pyro)phosphate lipid.
View Article and Find Full Text PDF