Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class.
View Article and Find Full Text PDFThe Stockmayer fluid, composed of dipolar spheres, has a well-known isotropic-ferroelectric phase transition at high dipole densities. However, there has been little investigation of the ferroelectric transition in nearly spherical fluids at dipole densities corresponding to those found in many polar solvents and in guest-host organic electro-optic materials. In this work, we examine the transition to ordered phases of low-aspect-ratio spheroids under both unperturbed and poled conditions, characterizing both the static dielectric response and thermodynamic properties of spheroidal systems.
View Article and Find Full Text PDFA broad nanoscopic study of a wide-range of dendritic organic nonlinear optical (NLO) self-assembly molecular glasses reveals an intermediate thermal phase regime responsible for both enhanced electric field poling properties and strong phase stabilization after poling. In this paper, the focus is on dendritic NLO molecular glasses involving quadrupolar, liquid crystal, and hydrogen bonding self-assembly mechanisms that, along with chromophore dipole-dipole interactions, dictate phase stability. Specifically, dendritic face-to-face interactions involving arene-perfluoroarene are contrasted to coumarin-containing liquid crystal mesogen and cinnamic ester hydrogen interactions.
View Article and Find Full Text PDFA high performing electro-optic (EO) chromophore with covalently attached coumarin-based pendant groups exhibits intermolecular correlation of coumarin units through molecular dynamics (MD) simulations. Unique, orthogonal molecular orientations of the chromophore and coumarin units are also evident when investigated optically. Such molecular orientation translates to reduced lattice dimensionality of the bulk C1 soft matter material system, leading to increased acentric order and EO activity.
View Article and Find Full Text PDFOrganic nonlinear electrooptical (ONLO) chromophores must be acentrically ordered for the ONLO material to have electrooptic (EO) activity. The magnitude of the order is characterized by the acentric order parameter, = ½(3
Identification of electronic intermolecular electrostatic interactions that can significantly enhance poling-induced order is important to the advancement of the field of organic electro-optics. Here, we demonstrate an example of such improvement achieved through exploitation of the interaction of coumarin pendant groups in chromophore-containing macromolecules. Acentric order enhancement is explained in terms of lattice-symmetry effects, where constraint of orientational degrees of freedom alters the relationship between centrosymmetric and acentric order.
View Article and Find Full Text PDF