Hydrogen peroxide (H₂O₂) is a main second messenger in oncogenic signaling networks including the Ras and the growth factor receptor pathways. This is achieved predominantly through the oxidation of redox-sensitive cysteine (Cys) residues in proteins resulting in changes to their structure and function. We previously identified annexin A2 (ANXA2) as a redox regulatory protein that plays an important cellular role during oxidative stress and also promoting tumorigenesis.
View Article and Find Full Text PDFThe cellular REDOX regulatory systems play a central role in maintaining REDOX homeostasis that is crucial for cell integrity, survival, and proliferation. To date, a substantial amount of data has demonstrated that cancer cells typically undergo increasing oxidative stress as the tumor develops, upregulating these important antioxidant systems in order to survive, proliferate, and metastasize under these extreme oxidative stress conditions. Since a large number of chemotherapeutic agents currently used in the clinic rely on the induction of ROS overload or change of ROS quality to kill the tumor, the cancer cell REDOX adaptation represents a significant obstacle to conventional chemotherapy.
View Article and Find Full Text PDFHuman papillomavirus (HPV) infection is necessary but not a sufficient cause for the development of invasive cervical cancer (ICC). Epithelial tissues, target for HPV, are exposed to reactive oxygen species (ROS) associated with tumor initiation and progression. The NADPH oxidase (NOX) and catalase (CAT) are involved in hydrogen peroxide (H2O2) production and inactivation, respectively.
View Article and Find Full Text PDF