Leishmania is a protozoan that causes leishmaniasis, a neglected tropical disease with clinical manifestations classified as cutaneous, mucocutaneous, and visceral leishmaniasis. In the infection context, the parasite can modulate macrophage gene expression affecting the microbicidal activity and immune response. The metabolism of L-arginine into polyamines putrescine, spermidine, and spermine reduces nitric oxide (NO) production, favoring Leishmania survival.
View Article and Find Full Text PDFMicroRNAs are small non-coding RNAs that regulate cellular processes by the post-transcriptional regulation of gene expression, including immune responses. The shift in the miRNA profiling of murine macrophages infected with can change inflammatory response and metabolism. L-arginine availability and its conversion into nitric oxide by nitric oxide synthase 2 (2) or ornithine (a polyamine precursor) by arginase 1/2 regulate macrophage microbicidal activity.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is caused by a respiratory virus with a wide range of manifestations, varying from asymptomatic to fatal cases, with a generally short outcome. However, some individuals present long-term viral shedding. We monitored 38 individuals who were mildly affected by the SARS-CoV-2 infection.
View Article and Find Full Text PDFsurvival inside macrophages depends on factors that lead to the immune response evasion during the infection. In this context, the metabolic scenario of the host cell-parasite relationship can be crucial to understanding how this parasite can survive inside host cells due to the host's metabolic pathways reprogramming. In this work, we aimed to analyze metabolic networks of bone marrow-derived macrophages from C57BL/6 mice infected with wild type (-WT) or arginase knocked out (-arg), using the untargeted Capillary Electrophoresis-Mass Spectrometry (CE-MS) approach to assess metabolomic profile.
View Article and Find Full Text PDFIntroduction: The pleiotropic kininogen-kallikrein-kinin system is upregulated in pregnancy and localizes in the uteroplacental unit. To identify the systemic and local participation of the bradykinin type 2 receptor (B2R), this was antagonized by Bradyzide (BDZ) during 2 periods: from days 20 to 34 and from days 20 to 60 in pregnant guinea pigs.
Methods: Pregnant guinea pigs received subcutaneous infusions of saline or BDZ from gestational day 20 until sacrifice on day 34 (Short B2R Antagonism [SH-B2RA]) or on day 60 (Prolonged B2R Antagonism [PR-B2RA]).
An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes.
View Article and Find Full Text PDFIntroduction:: The pleiotropic kininogen-kallikrein-kinin system is upregulated in pregnancy and localizes in the uteroplacental unit. To identify the systemic and local participation of the bradykinin type 2 receptor (B2R), this was antagonized by Bradyzide (BDZ) during 2 periods: from days 20 to 34 and from days 20 to 60 in pregnant guinea pigs.
Methods:: Pregnant guinea pigs received subcutaneous infusions of saline or BDZ from gestational day 20 until sacrifice on day 34 (Short B2R Antagonism [SH-B2RA]) or on day 60 (Prolonged B2R Antagonism [PR-B2RA]).
The identification of RNAs that are not translated into proteins was an important breakthrough, defining the diversity of molecules involved in eukaryotic regulation of gene expression. These non-coding RNAs can be divided into two main classes according to their length: short non-coding RNAs, such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). The lncRNAs in association with other molecules can coordinate several physiological processes and their dysfunction may impact in several pathologies, including cancer and infectious diseases.
View Article and Find Full Text PDFObjective: To determine the normal limits of menstrual fluid volume during reproductive life, quantified by direct measurement.
Methods: This was an observational, prospective clinical trial of healthy women aged 20-49 years old, with normal menstrual periods, recruited in a Natural Family Planning Unit. Women collected their menstrual fluid for at least 3 menstrual periods using a vaginal cup.
Parasite recognition by Toll-like receptors (TLRs) contributes to macrophage activation and subsequent control of infection through the coordinated production of pro-inflammatory and microbicidal effector molecules. The modulation of microRNA (miRNA) expression by infection potentially mediates the post-transcriptional regulation of the expression of genes involved in leishmanicidal activity. Here, the contribution of TLR signaling to the miRNA profile and gene expression was evaluated in -infected murine macrophages.
View Article and Find Full Text PDFis a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with wild type (WT) or arginase knockout (arg ).
View Article and Find Full Text PDFBackground: Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection.
View Article and Find Full Text PDFBackground: Leishmania uses the amino acid L-arginine as a substrate for arginase, enzyme that produces urea and ornithine, last precursor of polyamine pathway. This pathway is used by the parasite to replicate and it is essential to establish the infection in the mammalian host. L-arginine is not synthesized by the parasite, so its uptake occurs through the amino acid permease 3 (AAP3).
View Article and Find Full Text PDFObjective: sFLT-1 e15a is a recently described sFlt-1 variant that is placental and primate specific. As such, it may have potential as a biomarker. Using a newly developed ELISA, we measured maternal plasma sFLT-1 e15a levels in women with fetal growth restriction and pre-eclampsia.
View Article and Find Full Text PDFThe bradykinin type 2 receptor (B2R), main effector of the pleiotropic kallikrein-kinin system (KKS), has been localized in the key sites related to placentation in human, rat and guinea pig utero-placental units. The present study was directed to characterize the content, the cellular and subcellular localization of B2R in the villi and basal plate of placentas from normal and preeclamptic pregnancies by means of western blotting, immunohistochemistry and immunoelectron microscopy. The protein content of B2R was demonstrated in both placental zones.
View Article and Find Full Text PDFBackground: The opposing renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) are upregulated in pregnancy and localize in the utero-placental unit. To test their participation as counter-regulators, circulating angiotensin II (AII) was exogenously elevated and the bradykinin B2 receptor (B2R) was antagonized in pregnant guinea-pigs. We hypothesized that disrupting the RAS/KKS balance during the period of maximal trophoblast invasion and placental development would provoke increased blood pressure, defective trophoblast invasion and a preeclampsia-like syndrome.
View Article and Find Full Text PDF