Anorexia nervosa (AN) is a psychiatric disorder that presents with profound weight dysregulation, metabolic disturbances, and an abnormal composition of gut microbial communities. As the intestinal microbiota can influence host metabolism, the impact of enteric microbial communities from patients with AN on host weight and adiposity was investigated. Germ-free (GF) mice were colonized with fecal microbiotas from either patients with AN (n = 4) prior to inpatient treatment (AN T1, n = 50 recipient mice), the same 4 patients following clinical renourishment (AN T2, n = 53 recipient mice), or age- and sex-matched non-AN controls (n = 4 human donors; non-AN, n = 50 recipient mice).
View Article and Find Full Text PDFIn two-component signal transduction, response regulator proteins contain the catalytic machinery for their own covalent phosphorylation and can catalyze phosphotransfer from a partner sensor kinase or autophosphorylate using various small molecule phosphodonors. Although response regulator autophosphorylation is physiologically relevant and a powerful experimental tool, the kinetic determinants of the autophosphorylation reaction and how those determinants might vary for different response regulators and phosphodonors are largely unknown. We characterized the autophosphorylation kinetics of 21 variants of the model response regulator Escherichia coli CheY that contained substitutions primarily at nonconserved active site positions D + 2 (CheY residue 59) and T + 2 (CheY residue 89), two residues C-terminal to conserved D57 and T87, respectively.
View Article and Find Full Text PDFPurpose: Medication reconciliation is a process to reduce errors and harm associated with loss of medication information as the patient enters and moves through the healthcare system. This study examines medication list accuracy upon hospital admission.
Design: This prospective study enrolled 75 English-speaking medical and surgical patients (18 years of age or older) who were taking prescription medications.
Two-component regulatory systems, comprising sensor kinase and response regulator proteins, carry out signal transduction in prokaryotic and eukaryotic microorganisms, as well as plants. Response regulators act as phosphorylation-mediated switches, turning on and off cellular responses to environmental stimuli. Self-catalyzed dephosphorylation is an important determinant of the duration of the response regulator activated state.
View Article and Find Full Text PDFIn two-component regulatory systems, covalent phosphorylation typically activates the response regulator signaling protein, and hydrolysis of the phosphoryl group reestablishes the inactive state. Despite highly conserved three-dimensional structures and active-site features, the rates of catalytic autodephosphorylation for different response regulators vary by a factor of almost 10(6). Previous studies identified two variable active-site residues, corresponding to Escherichia coli CheY residues 59 and 89, that modulate response regulator autodephosphorylation rates about 100-fold.
View Article and Find Full Text PDFMany signal transduction networks control their output by switching regulatory elements on or off. To synchronize biological response with environmental stimulus, switching kinetics must be faster than changes in input. Two-component regulatory systems (used for signal transduction by bacteria, archaea and eukaryotes) switch via phosphorylation or dephosphorylation of the receiver domain in response regulator proteins.
View Article and Find Full Text PDF