Publications by authors named "Stephanie A McMains"

Spatial navigation is a cognitive skill critical for accomplishing daily goal-directed behavior in a complex environment; however, older adults exhibit marked decline in navigation performance with age. Neuroprotective interventions that enhance the functional integrity of navigation-linked brain regions, such as those in the medial temporal lobe memory system, may preserve spatial navigation performance in older adults. Importantly, a well-established body of literature suggests that cardiorespiratory fitness has measurable effects on neurobiological integrity in the medial temporal lobes, as well as in other brain areas implicated in spatial navigation, such as the precuneus and cerebellum.

View Article and Find Full Text PDF

Multiple stimuli that are present simultaneously in the visual field compete for neural representation. At the same time, however, multiple stimuli in cluttered scenes also undergo perceptual organization according to certain rules originally defined by the Gestalt psychologists such as similarity or proximity, thereby segmenting scenes into candidate objects. How can these two seemingly orthogonal neural processes that occur early in the visual processing stream be reconciled? One possibility is that competition occurs among perceptual groups rather than at the level of elements within a group.

View Article and Find Full Text PDF

Functional magnetic resonance imaging studies have shown that human ventral visual cortex anterior to human visual area V4 contains two visual field maps, VO-1 and VO-2, that together form the ventral occipital (VO) cluster (Brewer et al., 2005). This cluster is characterized by common functional response properties and responds preferentially to color and object stimuli.

View Article and Find Full Text PDF

Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that varied the delay period and the stimuli to be stored, we found dissociations between functional magnetic resonance imaging (fMRI) activity in PPC and behavioral measures of capacity.

View Article and Find Full Text PDF

Selective attention modulates neural activity in the visual system both in the presence and in the absence of visual stimuli. When subjects direct attention to a particular location in a visual scene in anticipation of the stimulus onset, there is an increase in baseline activity. How do such baseline increases relate to the attentional modulation of stimulus-driven activity? Using functional magnetic resonance imaging, we demonstrate that baseline increases related to the expectation of motion or color stimuli at a peripheral target location do not predict the modulation of neural responses evoked by these stimuli when attended.

View Article and Find Full Text PDF

Human parietal cortex is implicated in a wide variety of sensory and cognitive functions, yet its precise organization remains unclear. Visual field maps provide a potential structural basis for descriptions of functional organization. Here, we detail the topography of a series of five maps of the contralateral visual hemifield within human posterior parietal cortex.

View Article and Find Full Text PDF

The involvement of occipital cortex in sensory processing is not restricted solely to the visual modality. Tactile processing has been shown to modulate higher-order visual and multisensory integration areas in sighted as well as visually deprived subjects; however, the extent of involvement of early visual cortical areas remains unclear. To investigate this issue, we employed functional magnetic resonance imaging in normally sighted, briefly blindfolded subjects with well-defined visuotopic borders as they tactually explored and rated raised-dot patterns.

View Article and Find Full Text PDF

Many visual tasks require deployment of attention to multiple objects or locations. We used functional magnetic resonance imaging and behavioral experiments to investigate the relative processing efficiency of two putative attentional mechanisms for performing such tasks: the "zoom lens" and "multiple spotlights." Two key questions were investigated: (1) does splitting the spotlight into multiple foci incur an overhead cost that diminishes the efficacy of attention compared with the zoom lens, and (2) does splitting the spotlight provide a benefit relative to the zoom lens by conserving attention resources that otherwise would be directed to task irrelevant stimuli? For both mechanisms, attending to multiple object locations decreased processing efficiency at a single location, resulting in both decreased behavioral performance and decreased blood oxygenation level-dependent (BOLD) signal attentional modulation.

View Article and Find Full Text PDF

Spatially directed attention strongly enhances visual perceptual processing. The metaphor of the "spotlight" has long been used to describe spatial attention; however, there has been considerable debate as to whether spatial attention must be unitary or may be split between discrete regions of space. This question was addressed here through functional MR imaging of human subjects as they performed a task that required simultaneous attention to two briefly displayed and masked targets at locations separated by distractor stimuli.

View Article and Find Full Text PDF