We present an explicit finite-difference method to simulate the nonideal multiphase fluid flow. The local density and momentum transport are modeled by the Navier-Stokes equations and the pressure is computed by the van der Waals equation of the state. The static droplet and the dynamics of liquid-vapor separation simulations are performed as validations of this numerical scheme.
View Article and Find Full Text PDFWe propose a novel class of edge-based interface-tracking (EBIT) methods in the field of multiphase flows for advecting the interface. The position of the interface is tracked by marker points located on the edges of the underlying grid, making the method flexible with respect to the choice of spatial discretization and suitable for parallel computation. In this article we present a simple EBIT method based on two-dimensional Cartesian grids and on a linear interface representation.
View Article and Find Full Text PDFThe authors report the histopathologic and ultrastructural features of gold threads, which were implanted in the cheek subcutis of a 77-year-old woman 10 years ago. These particles did not give rise to any adverse reactions and were fortuitously discovered by the surgeon during a facelift. Histopathology showed a nonpolarizing exogenous material consisting of black oval structures surrounded by a capsule of fibrosis and by a discrete inflammatory reaction with a few giant cells.
View Article and Find Full Text PDFThe splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets. At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular splashing.
View Article and Find Full Text PDFWe show that the Kelvin-Helmholtz instability excited by a localized perturbation yields a self-similar wave. The instability of the mixing layer was first conceived by Helmholtz as the inevitable growth of any localized irregularity into a spiral, but the search and uncovering of the resulting self-similar evolution was hindered by the technical success of Kelvin's wavelike perturbation theory. The identification of a self-similar solution is useful since its specific structure is witness of a subtle nonlinear equilibrium among the forces involved.
View Article and Find Full Text PDFWe simulate the impact of a viscous liquid drop onto a smooth dry solid surface. As in experiments, when ambient air effects are negligible, impact flattens the falling drop without producing a splash. The no-slip boundary condition at the wall produces a boundary layer inside the liquid.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2007
A two-dimensional model for the erosion generated by viscous free-surface flows, based on the shallow-water equations and the lubrication approximation, is presented. It has a family of self-similar solutions for straight erodible channels, with an aspect ratio that increases in time. It is also shown, through a simplified stability analysis, that a laminar river can generate various bar instabilities very similar to those observed in natural rivers.
View Article and Find Full Text PDF