Publications by authors named "Stephane Trombotto"

Chitosans are promising biopolymers for diverse applications, with material properties and bioactivities depending i.a. on their pattern of acetylation (PA).

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses the development of eco-friendly lab-on-a-chip manufacturing using chitosan, a biodegradable polysaccharide, instead of oil-based polymers.
  • Researchers created thick, rigid chitosan films and implemented a neutralization step to enhance their stability in water, while also analyzing their mechanical properties.
  • The study compared two methods for creating microchannels in these films and successfully produced the first functional chitosan microfluidic devices, marking progress towards sustainable production techniques.
View Article and Find Full Text PDF

Chitosans (CS) have been of great interest due to their properties and numerous applications. However, CS have poor solubility in neutral and basic media, which limits their use in these conditions. In contrast, chitooligosaccharides (COS) have better solubility in water and lower viscosity in aqueous solutions whilst maintaining interesting biological properties.

View Article and Find Full Text PDF

Surface treatment by adhesive polymers is a promising solution to immobilize and study bacteria cells through microscopic assays and, for example, control their growth or determine their susceptibility to antibiotic treatment. The stability of such functional films in wet conditions is crucial, as the film degradation would compromise a persistent use of the coated devices. In this work, low roughness chitosan thin films of degrees of acetylation (DA) ranging from 0.

View Article and Find Full Text PDF

Chitosan-coated surfaces are of great interest for biomedical applications (antibacterial coatings, implants, would healing, single-cell microfluidics…). However, one major limitation of chitosan-based systems is the high solubility of the polymer under acidic aqueous conditions. Herein, we describe a simple procedure to prepare extremely smooth and stable chitosan coatings.

View Article and Find Full Text PDF

Close to half of the world's pregnancies are still unplanned, reflecting a clear unmet need in contraception. Ideally, a contraceptive would provide the high efficacy of hormonal treatments, without systemic side effects. Here, we studied topical reinforcement of the cervical mucus by chitosan mucoadhesive polymers as a form of female contraceptive.

View Article and Find Full Text PDF

The functionalization of surfaces using chitosan oligomers is of great interest for a wide range of applications in biomaterial and biomedical fields, as chitosan oligomers can provide various functional properties including biocompatibility, wetting, adhesion, and antibacterial activity. In this study, an innovative process for the regiospecific chemical grafting of reducing-end-modified chitosan oligomers brushes onto silicon wafers is described. Chitosan oligomers (COS) with well-defined structural parameters (average DP ~19 and DA ~0%) and bearing a 2,5-anhydro-d-mannofuranose (amf) unit at the reducing end were obtained via nitrous acid depolymerization of chitosan.

View Article and Find Full Text PDF

The nitrous acid depolymerization of chitosan enables the synthesis of singular chitosan oligosaccharides (COS) since their reducing-end unit is composed of 2,5-anhydro-d-mannofuranose (amf). In the present study, we describe a chemical method for the reducing-end conjugation of COS-amf by the commercially available dioxyamine -1,3-propanediylbishydroxylamine in high mass yields. The chemical structure of resulting dioxyamine-linked COS-amf synthesized by both oximation and reductive amination ways were fully characterized by H- and C-NMR spectroscopies and MALDI-TOF mass spectrometry.

View Article and Find Full Text PDF

FeO nanoparticles coated with chito-oligosaccharides (COS) were prepared in situ by a simple co-precipitation method through a mixing of iron ions (Fe and Fe) and COS aqueous solutions followed by precipitation with ammonia. The impact of COS with different degree of polymerization (DP 10, 24 and 45) and degree of N-acetylation (DA) ∼ 24% and 50% (exhibiting high solubility) on the synthesis and physical properties of the coated magnetic nanoparticles was evaluated. Several advantages were found when the magnetic nanoparticles were prepared in the presence of the studied COS, such as: preparation of functionalized magnetic nanoparticles with narrower size distributions and, consequently, higher saturation magnetization (an increase of up to 22%); and an expressive increasing in the concentration of COS-coated magnetic nanoparticles (up to twice) in the cell viability test in comparison with pure FeO nanoparticles.

View Article and Find Full Text PDF

The many interesting properties of chitosan polysaccharides have prompted their extensive use as biomaterial building blocks, for instance as antimicrobial coatings, tissue engineering scaffolds, and drug delivery vehicles. The translation of these chitosan-based systems to the clinic still requires a deeper understanding of their safety profiles. For instance, the widespread claim that chitosans are spermicidal is supported by little to no data.

View Article and Find Full Text PDF

Five chitosans with different degrees of -acetylation (DAs), molar masses, and origins were depolymerized by nitrous acid treatment in acidic media, leading to water-soluble 2,5-anhydro-d-mannose chain end oligomers with DP < 20. The kinetics of the reaction was studied, and the best work conditions were found to be 3 h reaction at 50 °C. It was shown that the DP of oligomers only depends on the quantity of NaNO involved.

View Article and Find Full Text PDF

Bioactive Phenols-loaded chitosan nanoparticles (PL-CNps) were developed by ionic gelation from Persian lemon () waste (PLW) and chitosan nanoparticles. Response Surface Methodology (RSM) was used to determine the optimal Ultrasound-Assisted Extraction (UAE) conditions for the total phenolic compounds (TPC) recovery from PLW (58.13 mg GAE/g dw), evaluating the ethanol concentration, extraction time, amplitude, and solid/liquid ratio.

View Article and Find Full Text PDF

In the context of gene delivery, chitosan has been widely used as a safe and effective polycation to complex DNA, RNA and more recently, siRNA. However, much less attention has been paid to chitosan oligosaccharides (COS) despite their biological properties. This study proposed to carry out a physicochemical study of COS varying in degree of polymerization (DP) from 5 to 50, both from the point of view of the solution properties and the complexing behavior with siRNA.

View Article and Find Full Text PDF

Chitooligosaccharides (COS) produced by nitrous acid depolymerization of chitosan are unique chitosan oligomers due to the presence of the 2,5-anhydro-d-mannofuranose (amf) unit at their reducing end. In this work, we focused on the reductive amination and the oximation of the amf aldehyde group towards various functionalized anilines, hydrazides and O-hydroxylamines. The aim of this work was to synthesize new COS-based building blocks functionalized at their reducing end by different "clickable" chemical groups such as alkene, alkyne, azide, hydrazide and thiol.

View Article and Find Full Text PDF

The mucus gel covers the wet epithelia that forms the inner lining of the body. It constitutes our first line of defense protecting the body from infections and other deleterious molecules. Failure of the mucus barrier can lead to the inflammation of the mucosa such as in inflammatory bowel diseases.

View Article and Find Full Text PDF

High intensity ultrasound irradiation was used to convert beta-chitin (BCHt) into chitosan (CHs). Typically, beta-chitin was suspended in 40% (w/w) aqueous sodium hydroxide at a ratio 1/10 (gmL(-1)) and then submitted to ultrasound-assisted deacetylation (USAD) during 50min at 60°C and a fixed irradiation surface intensity (52.6Wcm(-2)).

View Article and Find Full Text PDF

The hydrolysis of chitin treated under supercritical conditions was successfully carried out using chitinases obtained by an optimized fermentation of the fungus Lecanicillium lecanii. The biopolymer was subjected to a pretreatment based on suspension in supercritical 1,1,1,2-tetrafluoroethane (scR134a), which possesses a critical temperature and pressure of 101°C and 40bar, respectively, followed by rapid depressurization to atmospheric pressure and further fibrillation. This methodology was compared to control untreated chitins and chitin subjected to steam explosion showing improved production of reducing sugars (0.

View Article and Find Full Text PDF

Crystalline chitosan nanofibril networks were prepared, preserving the native structural packing and the polymer high molecular weight. The fine microstructure of the nanomaterial, obtained by mild hydrolysis of chitosan (CHI), was characterized by using synchrotron small- and wide-angle X-ray scattering (SAXS and WAXS), transmission electron microscopy (TEM) and electron diffraction. Hydrolysis of chitosan yielded a network of crystalline nanofibrils, containing both allomorphs of chitosan: hydrated and anhydrous.

View Article and Find Full Text PDF

Nowadays, the easy access of tetra-N-acetyl-chitopentaose and its counterparts is highly interesting since such chemical compounds are precursors of biological signal molecules with a strong agro-economic impact. The chemical synthesis of tetra-N-acetyl-chitopentaose by controlled N-acetylation of the glucosamine pentamer hydrochloride under mild conditions is described herein. A systematic study on the influence of the different parameters involved in this reaction, such as the solvent, the acetylating agent, and the base used for the deprotonation of ammonium groups of the starting material was carried out.

View Article and Find Full Text PDF

Production of chitin deacetylases from the phytopathogenic fungus Colletotrichum gloeosporioides was successfully achieved by submerged fermentation. The highest specific activity of 0.018 U mg(-1) of protein was obtained after 96 h of cultivation at pH 6 and 28°C.

View Article and Find Full Text PDF

Chitin production was biologically achieved by lactic acid fermentation (LAF) of shrimp waste (Litopenaeus vannameii) in a packed bed column reactor with maximal percentages of demineralization (D(MIN)) and deproteinization (D(PROT)) after 96 h of 92 and 94%, respectively. This procedure also afforded high free astaxanthin recovery with up to 2400 μg per gram of silage. Chitin product was also obtained from the shrimp waste by a chemical method using acid and alkali for comparison.

View Article and Find Full Text PDF

Adhesion to biological tissues is a challenge especially when the adhesive is in contact with physiological fluids. Abdominal hernia is a disease that often requires the implantation of a mesh within the abdominal wall. To minimize pain and postsurgical complications, gluing the mesh appears to be a convenient method.

View Article and Find Full Text PDF

The total chemical synthesis of the four well-defined chitodisaccharides is described using N-trichloroacetyl (TCA) and N-benzyloxycarbonyl (Z) as C-2 protecting groups for acetamido and free amino groups, respectively. The synthesis is carried out according to a strategy that paves way to the elaboration of various homo- and hetero-chitooligosaccharides, with perfect control of the number and the position of GlcN and GlcNAc units along the oligomer chain.

View Article and Find Full Text PDF

We investigated the properties of polymeric systems formed by cross-linking chitosan with modified starch (oxidized maltodextrin). Such a macromolecular cross-linker proved to be efficient to react with chitosan with potentially minimal toxicity. The structural characterization of modified starch alone and of the two-polysaccharide reactive systems was performed using (1)H NMR and FTIR.

View Article and Find Full Text PDF

The heterogeneous hydrolysis of fully deacetylated chitosan solid samples was carried out with concentrated HCl. The hydrolysis kinetics was studied at different temperatures and HCl concentrations. From 5 to 50 degrees C in the hydrolysis time range up to 50 h, a monomodal distribution of molecular weights was observed connected to the only degradation of amorphous domains.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlh1luhghfptctshqhe2d4f52424441ca): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once