Background: Improving experimental conditions in preclinical animal research is a major challenge, both scientifically and ethically. Automated digital ventilated cages (DVC) offer the advantage of continuous monitoring of animal activity in their home-cage. The potential utility of this technology remains understudied and deserves investigation in the field of oncology.
View Article and Find Full Text PDFBackground: Neuroendocrine prostate cancer (NEPC) is a multi-resistant variant of prostate cancer (PCa) that has become a major challenge in clinics. Understanding the neuroendocrine differentiation (NED) process at the molecular level is therefore critical to define therapeutic strategies that can prevent multi-drug resistance.
Methods: Using RNA expression profiling and immunohistochemistry, we have identified and characterised a gene expression signature associated with the emergence of NED in a large PCa cohort, including 169 hormone-naïve PCa (HNPC) and 48 castration-resistance PCa (CRPC) patients.
The recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell-cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated.
View Article and Find Full Text PDFThe development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment.
View Article and Find Full Text PDFBackground: Cancer stem cells (CSC) define a population of rare malignant cells endowed with 'stemness' properties, such as self-renewing, multipotency and tumorigenicity. They are responsible for tumor initiation and progression, and could be associated with resistance to immunotherapies by negatively regulating antitumor immune response and acquiring molecular features enabling escape from CD8 T-cell immunity. However, the immunological hallmarks of human lung CSC and their potential interactions with resident memory T (T) cells within the tumor microenvironment have not been investigated.
View Article and Find Full Text PDFHypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function.
View Article and Find Full Text PDFPurpose: A minority of patients currently respond to single-agent immune-checkpoint blockade (ICB), and strategies to increase response rates are urgently needed. AXL is a receptor tyrosine kinase commonly associated with drug resistance and poor prognosis in many cancer types, including in clear-cell renal cell carcinoma (ccRCC). Recent experimental cues in breast, pancreatic, and lung cancer models have linked AXL with immune suppression and resistance to antitumor immunity.
View Article and Find Full Text PDFVon Hippel-Lindau () is a rare hereditary syndrome due to mutations of the tumor suppressor gene. Patients harboring the R167Q mutation of the gene have a high risk of developing ccRCCs. We asked whether the R167Q mutation with critical aspects of pseudo-hypoxia interferes with tumor plasticity.
View Article and Find Full Text PDFIntratumoral hypoxia is a widely established element of the pancreatic tumor microenvironment (TME) promoting immune escape, tumor invasion, and progression, while contributing to treatment resistance and poor survival. Despite this critical role, hypoxia is underrepresented in molecular signatures of pancreatic ductal adenocarcinoma (PDA) and concurrent investigations into the hypoxia-immune status are lacking. In this work a literature-based approach was applied to derive an eight-gene hypoxia signature that was validated in fourteen cancer cell lines and in a cohort of PDA.
View Article and Find Full Text PDFOncol Rep
March 2021
Waterpipe tobacco smoking (WPS) continues to spread globally and presents serious health hazards. The aim of the present study was to investigate the effects of treatment with WPS condensate (WPSC) on lung cell proliferation and plasticity as well as tumor cell recognition and killing by natural killer (NK) cells using cytotoxicity assays. The results indicated that exposure of normal and cancer lung cell lines to WPSC resulted in a decrease in their in vitro growth in a dose-dependent manner and it induced tumor senescence.
View Article and Find Full Text PDFResistance of tumor cells to cell‑mediated cytotoxicity remains an obstacle to the immunotherapy of cancer and its molecular basis is poorly understood. To investigate the acquisition of tumor resistance to cell‑mediated cytotoxicity, resistant variants were selected following long‑term natural killer (NK) cell selection pressure. It was observed that these variants were resistant to NK cell‑mediated lysis, but were sensitive to autologous cytotoxic T lymphocytes or cytotoxic drugs.
View Article and Find Full Text PDFEpithelial-mesenchymal plasticity (EMP) of cancer cells contributes to cancer cell heterogeneity, and it is well established that EMP is a critical determinant of acquired resistance to cancer treatment modalities including radiation therapy, chemotherapy, and targeted therapies. Here, we aimed to explore how EMP contributes to cancer cell camouflage, allowing an ever-changing population of cancer cells to pass under the radar of our immune system and consequently compromise the effect of immune checkpoint blockade therapies. The ultimate clinical benefit of any combination regimen is evidenced by the sum of the drug-induced alterations observed in the variety of cellular populations composing the tumor immune microenvironment.
View Article and Find Full Text PDFWhile it is widely accepted that high intratumoral heterogeneity confers serious challenges in the emerging resistance and the subsequent effective therapeutic targeting of cancer, the underlying biology of intratumoral heterogeneity remains elusive. In particular, it remains to be fully elucidated how microenvironmental factors shape genetic and non-genetic heterogeneity, which in turn determine the course of tumor evolution and clinical progression. In this context, hypoxia, a hallmark of most growing cancers, characterized by decreased O partial pressure is a key player of the tumor microenvironment.
View Article and Find Full Text PDFIntroduction: Acquired cancer therapy resistance evolves under selection pressure of immune surveillance and favors mechanisms that promote drug resistance through cell survival and immune evasion. AXL receptor tyrosine kinase is a mediator of cancer cell phenotypic plasticity and suppression of tumor immunity, and AXL expression is associated with drug resistance and diminished long-term survival in a wide range of malignancies, including NSCLC.
Methods: We aimed to investigate the mechanisms underlying AXL-mediated acquired resistance to first- and third-generation small molecule EGFR tyrosine kinase inhibitors (EGFRi) in NSCLC.
Immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer. However, several abnormalities in the tumor microenvironment (TME) that can thwart the efficacy of immunotherapies have been established. Microenvironmental hypoxia is a determining factor in shaping aggressiveness, metastatic potential and treatment resistance of solid tumors.
View Article and Find Full Text PDFImmune resistance may arise from both genetic instability and tumor heterogeneity. Microenvironmental stresses such as hypoxia and various resistance mechanisms promote carcinoma cell plasticity. AXL, a member of the TAM (Tyro3, Axl, and Mer) receptor tyrosine kinase family, is widely expressed in human cancers and increasingly recognized for its role in cell plasticity and drug resistance.
View Article and Find Full Text PDFHypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression.
View Article and Find Full Text PDFGradients of hypoxia occur in most solid tumors and cells found in hypoxic regions are associated with the most aggressive and therapy-resistant fractions of the tumor. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia in melanoma. Using microarray technology, whole genome gene expression profiling was first performed on established melanoma cell lines.
View Article and Find Full Text PDFRecent antitumor immunotherapies such as monoclonal antibodies targeting immune checkpoints have led to outstanding results in several cancers. However, despite the favorable outcomes for responding patients, the response rate remains relatively low. This is in part due to the influence of the tumor microenvironment (TME) in protecting the tumor from the antitumor immune response and facilitating immune escape.
View Article and Find Full Text PDFThe microenvironment of a developing tumor is composed of proliferating cancer cells, blood vessels, stromal cells, infiltrating inflammatory cells, and a variety of associated tissue cells. The crosstalk between stromal cells and malignant cells within this environment crucially determines the fate of tumor progression, its hostility, and heterogeneity. It is widely accepted that hypoxic stresses occur in most solid tumors.
View Article and Find Full Text PDFThe administration of -expanded Natural Killer (NK) cells in leukemia therapy is still challenging, in part due to the difficulty to generate in sufficient quantities fully mature and functional NK cells and Identification of surface markers indicative of NK maturation and functionality is therefore needed. Here, based on the analysis of surface receptors of -expanded NK cells, we identified CD94 as a surface marker correlating with high lytic potential against leukemic cell lines and immunological synapse formation. CD94-positive -expanded NK cells displayed higher expression of NKG2 receptors and the adhesion molecule LFA-1, as compared with their CD94-negative counterparts.
View Article and Find Full Text PDFExtracellular vesicles released from cancer cells may play an important role in cancer progression by shuttling oncogenic information into recipient cells. However, our knowledge is still fragmentary and there remain numerous questions regarding the mechanisms at play and the functional consequences of these interactions. We have recently established a mesenchymal-like prostate cancer cell line (22Rv1/CR-1; Mes-PCa).
View Article and Find Full Text PDF