Endoluminal microscopy and spectroscopy could significantly improve the efficiency of clinical endoscopic examination by allowing in-situ detection, staging and grading of potentially cancerous lesions. Indeed, high-end optical microscopy techniques such as confocal, coherence-gated and single-/multi-photon microscopy today deliver optical histology information and spectrally/spatially resolved measurements of tissue reflectance allow grading and staging of precancerous/cancerous lesions. Owing to the brisk development of MEMS technologies, miniaturization requirements satisfying the dimension requirements for endoscope integration have been met within the last decade and the present paper will report on the current and future development of MEMS-based endoscopes for optical diagnosis.
View Article and Find Full Text PDFThe pyramid wavefront sensor is very similar to the Fourier knife-edge test, but employs dynamic modulation to quantify the phase derivative. For circular modulation, we compare approximate geometrical optics calculations, more exact diffraction calculations, and experimental results. We show that both the sinusoidal and the approximate linear relationship between wavefront derivative and wavefront sensor response can be derived rigorously from diffraction theory.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
April 2006
Purpose: To assess the capability of the subfoveal choroidal circulation to regulate its blood flow in response to an acute increase in ocular perfusion pressure in the eyes of healthy elderly persons or of subjects with neovascular age-related macular degeneration (AMD).
Methods: Changes of subfoveal choroidal blood velocity (ChBVel), volume (ChBVol), and flow (ChBF) induced by isometric exercise were determined using laser Doppler flowmetry (LDF) in 19 young healthy volunteers (group 1), 24 elderly healthy volunteers with mild macular pigment distribution changes (group 2), and 23 subjects with subfoveal classic neovascularization caused by AMD (group 3).
Results: Isometric exercise induced significant increases in mean ocular perfusion pressure (PPm) of 19.
A new adaptive optics system for the eye using a pyramid wavefront sensor interfaced in closed-loop with a piezoelectric deformable mirror is presented. Sensing parameters such as CCD integration time, pupil sampling and beam steering amplitude are tested on the bench and in vivo on several volunteers to optimize real-time optical correction. The system allows closed-loop operation at a frame rate of 55 Hz and reduces ocular aberration up to lambda/5 residual RMS over a 6 mm pupil.
View Article and Find Full Text PDFPurpose: The phosphorescence lifetime of certain metalloporphyrins dissolved in a physiological medium provides an optical signature for local oxygen concentration (pO(2)). This effect is used for measuring physiological pO(2) levels in various tissues. However, the phosphorescence quenching of certain metalloporphyrin triplet states by oxygen also creates singlet oxygen, which is highly reactive and capable of inducing tissue damage.
View Article and Find Full Text PDFA fundus camera-based phosphorometer to noninvasively and quasicontinuously measure the blood partial pressure of oxygen (pO(2,blood)) in the microvasculature of the pig optic nerve using the principle of the phosphorescence quenching by O(2) is described. A porphyrin dye is injected into the venous circulation and the decay of its phosphorescence emission is detected locally in the eye, after excitation with a flash of light. Combined with blood flow measurements by means of a laser Doppler flowmeter mounted on the phosphorometer, we demonstrate the capability of the instrument to determine the time course of optic nerve blood flow and pO(2,blood) in response to various physiological stimuli, such as hyperoxia and hypercapnia.
View Article and Find Full Text PDFBackground: In healthy subjects, choroidal blood flow is regulated when the mean ocular perfusion pressure increases. Since capillary vascular beds are altered in diabetic patients, the regulation of choroidal blood flow could be affected by this pathology.
Patients And Methods: 10 type I diabetic patients without retinopathy (DNR group) and 7 type I diabetic patients with retinopathy (DR group) participated in the study.
Klin Monbl Augenheilkd
April 2002
Background: To investigate the effect of isovolumic hemodilution on the tissue oxygenation of the optic nerve head (ONH).
Material And Methods: In 9 miniature pigs (6 - 12 kg), hemodilution was performed by replacing 100 - 140 ml of blood by an equivalent volume of 6 % hydroxyethyl starch in saline. The blood flow parameters in the ONH microcirculation, namely velocity (BVel), volume (BVol) and flow (BF), were measured by laser Doppler flowmetry.