Publications by authors named "Stephane Puechmorel"

Explainable Artificial Intelligence (XAI) and acceptable artificial intelligence are active topics of research in machine learning. For critical applications, being able to prove or at least to ensure with a high probability the correctness of algorithms is of utmost importance. In practice, however, few theoretical tools are known that can be used for this purpose.

View Article and Find Full Text PDF

Finding an approximate probability distribution best representing a sample on a measure space is one of the most basic operations in statistics. Many procedures were designed for that purpose when the underlying space is a finite dimensional Euclidean space. In applications, however, such a simple setting may not be adapted and one has to consider data living on a Riemannian manifold.

View Article and Find Full Text PDF

In this paper, the problem of clustering rotationally invariant shapes is studied and a solution using Information Geometry tools is provided. Landmarks of a complex shape are defined as probability densities in a statistical manifold. Then, in the setting of shapes clustering through a -means algorithm, the discriminative power of two different shapes distances are evaluated.

View Article and Find Full Text PDF

Bundling visually aggregates curves to reduce clutter and help finding important patterns in trail-sets or graph drawings. We propose a new approach to bundling based on functional decomposition of the underling dataset. We recover the functional nature of the curves by representing them as linear combinations of piecewise-polynomial basis functions with associated expansion coefficients.

View Article and Find Full Text PDF