The bioavailability of iron from a food depends on its concentration and chemical form but also on dietary factors and nutrient interactions, which are affected by storage conditions and time. Here we investigated the time-course profile of iron in a hybrid 3D-printed food composed of alternating layers of liver and lentils after 0, 5, 7, 14 and 21 days of storage at 4 °C under oxygen or nitrogen packaging. Synchrotron X-ray fluorescence highlighted major variations in iron distribution in both the animal and plant parts of the food as a function of storage conditions.
View Article and Find Full Text PDFSmoked fish fillets are pre-salted as a food conservation and quality preservation measure. Here we investigated biochemical and sensory aspects of smoked salmon fillets. Left-side salmon fillets were dry-salted while the right-side fillets underwent a mixed salting method consisting of an injection of saturated brine followed by surface application of dry salt.
View Article and Find Full Text PDFEl-Guedid is an Algerian traditional meat-based product that is prepared from red meats. It belongs to the wide diversity of salted/dried meat products. This study described the physicochemical and microbiological properties of different products from four animal origins and during all the conservation.
View Article and Find Full Text PDFA reaction-diffusion mathematical model has been developed to predict the gastric digestion of meat proteins. The model takes into account pepsin diffusion and proton diffusion in bolus particles and the pH buffering capacity of meat. The computations show that the size of bolus particles and the change in gastric pH have a substantial effect on the percentage of protein digested in the stomach and that the pH buffering capacity of meat has to be accounted for to properly calculate the gastric digestibility of meat.
View Article and Find Full Text PDFThe meat crust that develops during cooking is desired by consumers for its organoleptic properties, but it is also where heterocyclic aromatic amines (HAs) are formed. Here we measured HAs formation during the development of a colored crust on the surface of a beef meat piece. HAs formation was lower in the crust than previously measured in meat slices subjected to the same air jet conditions.
View Article and Find Full Text PDFTemperature, salt and water contents are key processing factors in dry-cured ham production. They affect how proteolysis, lipid oxidation, structure and texture evolve, and thus determine the sensory properties and final quality of dry-cured ham. The aim of this study was to quantify the interrelationships and the time course of (i) proteolysis, (ii) lipid oxidation, (iii) five textural parameters: hardness, fragility, cohesiveness, springiness and adhesiveness and (iv) four structural parameters: fibre numbers, extracellular spaces, cross section area, and connective tissue area, during the dry-cured ham process.
View Article and Find Full Text PDFHeating of beef muscles modifies the water content, the micronutrient content and the colour of beef meat. Juice expelling and loss of water soluble micronutrients were predicted by combined transfer-kinetics models. Kinetics modeling and crust formation are needed to progress toward a reliable prediction of HAAs formation.
View Article and Find Full Text PDFA heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath.
View Article and Find Full Text PDFUnderstanding and controlling structural and physical changes in meat during cooking is of prime importance. Nuclear magnetic resonance imaging (MRI) is a noninvasive, nondestructive tool that can be used to characterize certain properties and structures both locally and dynamically. Here we show the possibilities offered by MRI for the in situ dynamic imaging of the connective network during the cooking of meat to monitor deformations between 20 and 75 °C.
View Article and Find Full Text PDFIn this study, the potential of synchronous front-face fluorescence coupled with chemometrics has been investigated for the analysis of cooked meat. Bovine meat samples (thin slices of 5 cm diameter) taken from Longissimus dorsi muscle were cooked at 237 degrees C for 0, 1, 2, 5, 7, and 10 min under control conditions. Synchronous front-face fluorescence spectra were collected on meat samples in the excitation wavelength range of 250 to 550 nm using offsets (Delta lambda) of 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, and 160 nm between excitation and emission wavelengths.
View Article and Find Full Text PDFEffectiveness of combined steam (10 and 60 s, 70 degrees C and 98 degrees C) and chemical treatments, using concentrated solutions of lactic acid (1 and 30 min, 5% and 10% lactic acid), on the inactivation of Listeria innocua inoculated on the surface of chicken skins have been studied. Surviving bacteria on the skin were enumerated immediately after treatment, and after 7 days of storage at 4 degrees C. The most effective treatment was the combination of steam of 98 degrees C and 10% lactic acid with its immediate efficacy being mainly attributed to the applied heat treatment.
View Article and Find Full Text PDF