We describe and demonstrate a novel technique for continuously tuning the frequency of a dual-loop-configuration optoelectronic rf oscillator. The rf tunability is obtained from a tunable diode laser and dispersive optical fibers. Results are presented for three ranges of frequency, centered at 550 MHz, 3 GHz, and 9 GHz.
View Article and Find Full Text PDFAn optoelectronic nonlinear delay oscillator seeded by a pulsed laser source is used to experimentally demonstrate a new transition scenario for the general class of delay differential dynamics, from continuous to discrete time behavior. This transition scenario differs from the singular limit map, or adiabatic approximation model that is usually considered. The transition from the map to the flow is observed when increasing the pulse repetition rate.
View Article and Find Full Text PDFA simple, stable, and tunable optical pulse source emitting 3.2 ps pulses at a 10 GHz repetition rate is presented. The pulses are obtained through soliton-assisted time-lens compression in a standard single mode fiber, and are fully characterized by wavelength-conversion frequency-resolved optical gating.
View Article and Find Full Text PDF