In the rigorous electromagnetic simulation of an imaging system, the evanescent waves from a point source or from a sample are naturally mixed with the propagative waves. Therefore, their contributions are difficult to distinguish. We present a point-source model made of only the evanescent waves.
View Article and Find Full Text PDFLabel-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches.
View Article and Find Full Text PDFPortland cement is extensively used for the conditioning of radioactive waste. However, its high alkalinity is a serious obstacle to the stabilization of waste containing aluminum metal since aluminum is oxidized by the pore solution with the production of dihydrogen. This work investigates the potential of an alternative binder, magnesium potassium phosphate (MKP) cement, for the stabilization of Al-Mg alloys comprising 2 to 4.
View Article and Find Full Text PDFThis Letter presents, to our knowledge, the first direct measurement of the three-dimensional distribution of photonic jets (PJs) generated by shaped-tip multimode optical fibers. A PJ at the distal end of optical fibers makes it easier to scan a sample, for lithography or optical analysis, for example, with a spot smaller than the diffraction limit. The backscattered light can also be easily collected.
View Article and Find Full Text PDFMicrosphere-assisted microscopy currently benefits from a considerable interest in the microscope-research community. Indeed, this new imaging technique enables the lateral resolution of optical microscopes to reach around λ/5 through a full-field and a far-field acquisition while being label-free. Despite the photonic jet clearly not being a relevant concept to justify the super-resolution phenomenon, we show here how it can be used to predict imaging formation and performance such as the image position and the microsphere magnification.
View Article and Find Full Text PDFWhite-light microsphere-assisted microscopy is a full-field and label-free imaging promising technique making it possible to achieve a subdiffraction lateral resolution. However, performance of this technique depends not only on the geometrical parameters but also on the illumination conditions of the optical system. In the present work, experimental measurements and computer simulations have been performed in air in order to determine the influence of the two diaphragm apertures of the Köhler arrangement and the spectral width of the light source on both the depth-of-focus of the microsphere and the optimization of the imaging contrast.
View Article and Find Full Text PDFIn the present work, we have investigated the combination of a superresolution microsphere-assisted 2D imaging technique with low-coherence phase-shifting interference microscopy. The imaging performance of this technique is studied by numerical simulation in terms of the magnification and the lateral resolution as a function of the geometrical and optical parameters. The results of simulations are compared with the experimental measurements of reference gratings using a Linnik interference configuration.
View Article and Find Full Text PDFThis Letter reports on the fabrication of glass lens doublets arranged in arrays and realized at wafer level by means of micro-fabrication. The technique is based on the accurate vertical assembly of separately fabricated glass lens arrays. Since each one of these arrays is obtained by glass melting in silicon cavities, silicon is employed as a spacer in order to build a well-aligned and robust optical module.
View Article and Find Full Text PDFWe report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied.
View Article and Find Full Text PDFWe report the impact on imaging quality of mirror suspensions, referred to as spider legs, used to support the reference mirror in a Mirau micro-interferometer that requires the vertical alignment of lens, mirror, and beamsplitter. Because the light goes from the microlens to the beamsplitter through the mirror plane, the spider legs are a source of diffraction. This impact is studied as a function of different parameters of the spider legs design.
View Article and Find Full Text PDFThis paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects.
View Article and Find Full Text PDFThis paper presents a simple method based on the measurement of the 3D intensity point spread function for the quality evaluation of high numerical aperture micro-optical components. The different slices of the focal volume are imaged thanks to a microscope objective and a standard camera. Depending on the optical architecture, it allows characterizing both transmissive and reflective components, for which either the imaging part or the component itself are moved along the optical axis, respectively.
View Article and Find Full Text PDF