Publications by authors named "Stephane Peineau"

Background: Studying synaptic plasticity in the rat hippocampus slice is a well-established way to analyze cellular mechanisms related to learning and memory. Different modes of recording can be used, such as extracellular field excitatory post-synaptic potential (EPSP) and diverse patch-clamp methods. However, most studies using these methods have examined only up to the juvenile stage of brain maturation, which is known to terminate during late adolescence/early adulthood.

View Article and Find Full Text PDF

Ethanol (EtOH) induces cognitive impairment through modulation of synaptic plasticity notably in the hippocampus. The cellular mechanism(s) of these EtOH effects may range from synaptic signaling modulation to alterations of the epigenome. Previously, we reported that two binge-like exposures to EtOH (3 g/kg, ip, 9 h apart) in adolescent rats abolished long-term synaptic depression (LTD) in hippocampus slices, induced learning deficits, and increased N-methyl-d-aspartate (NMDA) receptor signaling through its GluN2B subunit after 48 hours.

View Article and Find Full Text PDF

Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion.

View Article and Find Full Text PDF

Proving endogenous GluN presence and functions in microglia require complementary steps to demonstrate (1) that GluN genes are transcripted and translated, (2) their cellular localization, (3) that the GluN are functional, and (4) the role of the functional GluN. The complete demonstration is performed by using mRNA detection technics, western blots, immunofluorescence, electrophysiology, calcium imaging, morphology studies, multiplex immunoassay together with conditional microglial Knock-Out mice and brain lesion models.

View Article and Find Full Text PDF

Mounting evidence suggests that the nervous and immune systems are intricately linked. Many proteins first identified in the immune system have since been detected at synapses, playing different roles in normal and pathological situations. In addition, novel immunological functions are emerging for proteins typically expressed at synapses.

View Article and Find Full Text PDF

A few hundred hypothalamic neurons form a complex network that controls reproduction in mammals by secreting gonadotropin-releasing hormone (GnRH). Timely postnatal changes in GnRH secretion are essential for pubertal onset. During the juvenile period, GnRH neurons undergo morphological remodeling, concomitantly achieving an increased responsiveness to kisspeptin, the main secretagogue of GnRH.

View Article and Find Full Text PDF

Unlabelled: Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface.

View Article and Find Full Text PDF

Objective: Transplanting exogenous neuronal progenitors to replace damaged neurons in the adult brain following injury or neurodegenerative disorders and achieve functional amelioration is a realistic goal. However, studies so far have rarely taken into consideration the preexisting inflammation triggered by the disease process that could hamper the effectiveness of transplanted cells. Here, we examined the fate and long-term consequences of human cerebellar granule neuron precursors (GNP) transplanted into the cerebellum of Harlequin mice, an adult model of progressive cerebellar degeneration with early-onset microgliosis.

View Article and Find Full Text PDF

How do microglia regulate synaptic function? In this issue of Neuron, Zhang et al. (2014) describe a novel form of long-term depression of AMPA receptor-mediated synaptic transmission in the hippocampus involving the activation of microglia.

View Article and Find Full Text PDF

Somatostatin (SRIF), by acting mainly through sst2 and sst5 receptors, is a potent inhibitor of hormonal secretion by the human anterior pituitary gland. However, the pattern of protein expression of these SRIF receptors remains unknown during pituitary development. To get further insights into the physiological role of SRIF receptors in human development and pituitary function, the present study examined the developmental expression of the sst2 and sst5 receptors in the individual cell types of the anterior human pituitary.

View Article and Find Full Text PDF
Article Synopsis
  • * This review emphasizes the functions of JAK-STAT in the mature central nervous system, particularly highlighting a potential non-nuclear role of STAT3 in synaptic plasticity.
  • * Dysregulation of the JAK-STAT pathway is linked to several conditions like inflammation, cancer, and neurodegenerative diseases, making it crucial for understanding brain disorders and their impact on brain cell functions.
View Article and Find Full Text PDF

Objective: The concept of inflammation-induced sensitization is emerging in the field of perinatal brain injury, stroke, Alzheimer disease, and multiple sclerosis. However, mechanisms underpinning this process remain unidentified.

Methods: We combined in vivo systemic lipopolysaccharide-induced or interleukin (IL)-1β-induced sensitization of neonatal and adult rodent cortical neurons to excitotoxic neurodegeneration with in vitro IL-1β sensitization of human and rodent neurons to excitotoxic neurodegeneration.

View Article and Find Full Text PDF

Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development.

View Article and Find Full Text PDF

Objective: Activated microglia play a central role in the inflammatory and excitotoxic component of various acute and chronic neurological disorders. However, the mechanisms leading to their activation in the latter context are poorly understood, particularly the involvement of N-methyl-D-aspartate receptors (NMDARs), which are critical for excitotoxicity in neurons. We hypothesized that microglia express functional NMDARs and that their activation would trigger neuronal cell death in the brain by modulating inflammation.

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK-3) has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD) that is induced by the synaptic activation of N-methyl-D-aspartate receptors (NMDARs). In the present article we summarize what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses.

View Article and Find Full Text PDF
Article Synopsis
  • * JAK2 and STAT3 isoforms, which are highly expressed in the brain, are localized in the postsynaptic density, indicating their importance in neuronal functions.
  • * This study reveals that the JAK/STAT pathway is essential for NMDA-receptor dependent long-term depression (NMDAR-LTD) in the hippocampus, linking it to synaptic plasticity in the brain beyond its roles in cytokine signaling.
View Article and Find Full Text PDF

The neuropeptide somatostatin (SRIF) is an important modulator of neurotransmission in the central nervous system and acts as a potent inhibitor of hormone and exocrine secretion. In addition, SRIF regulates cell proliferation in normal and tumorous tissues. The six somatostatin receptor subtypes (sst1, sst2A, sst2B, sst3, sst4, and sst5), which belong to the G protein-coupled receptor (GPCR) family, share a common molecular topology: a hydrophobic core of seven transmembrane-spanning α-helices, three intracellular loops, three extracellular loops, an amino-terminus outside the cell, and a carboxyl-terminus inside the cell.

View Article and Find Full Text PDF

Brain damage through excitotoxic mechanisms is a major cause of cerebral palsy in infants. This phenomenon usually occurs during the fetal period in human, and often leads to lifelong neurological morbidity with cognitive and sensorimotor impairment. However, there is currently no effective therapy.

View Article and Find Full Text PDF

Long-term depression (LTD) in the CNS has been the subject of intense investigation as a process that may be involved in learning and memory and in various pathological conditions. Several mechanistically distinct forms of this type of synaptic plasticity have been identified and their molecular mechanisms are starting to be unravelled. Most studies have focused on forms of LTD that are triggered by synaptic activation of either NMDARs (N-methyl-D-aspartate receptors) or metabotropic glutamate receptors (mGluRs).

View Article and Find Full Text PDF

Once viewed as an isolated, immune-privileged organ, the central nervous system has undergone a conceptual change. Neuroinflammation has moved into the focus of research work regarding pathomechanisms underlying perinatal brain damage. In this review, we provide an overview of current concepts regarding perinatal brain damage and the role of inflammation in the disease pathomechanism.

View Article and Find Full Text PDF

Background: The signalling mechanisms involved in the induction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the hippocampus are poorly understood. Numerous studies have presented evidence both for and against a variety of second messengers systems being involved in LTD induction. Here we provide the first systematic investigation of the involvement of serine/threonine (ser/thr) protein kinases in NMDAR-LTD, using whole-cell recordings from CA1 pyramidal neurons.

View Article and Find Full Text PDF

The neuropeptide somatostatin has been suggested to play an important role during neuronal development in addition to its established modulatory impact on neuroendocrine, motor and cognitive functions in adults. Although six somatostatin G protein-coupled receptors have been discovered, little is known about their distribution and function in the developing mammalian brain. In this study, we have first characterized the developmental expression of the somatostatin receptor sst2A, the subtype found most prominently in the adult rat and human nervous system.

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK3) has been implicated in major neurological disorders, but its role in normal neuronal function is largely unknown. Here we show that GSK3beta mediates an interaction between two major forms of synaptic plasticity in the brain, N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and NMDA receptor-dependent long-term depression (LTD). In rat hippocampal slices, GSK3beta inhibitors block the induction of LTD.

View Article and Find Full Text PDF