Publications by authors named "Stephane Mazlan"

Article Synopsis
  • The research investigates how shear stress affects the release and absorption of endothelial extracellular vesicles (EVs), with findings indicating that more EVs are produced under HSS conditions than LSS.
  • Proteomic analysis revealed that LSS-derived EVs are enriched with proteins that enhance their uptake by endothelial cells, which may contribute to oxidative stress in those cells, highlighting the complex role of shear stress and EVs in vascular health.
View Article and Find Full Text PDF

The observations that mesenchymal stem cells (MSCs) exert cardiac protection and repair via their secretome with the active component(s) identified as exosomes underpinned our test of the efficacy of MSC exosomes in a porcine model of myocardial infarction (MI) when administered systemically by the convenient method of intravenous (IV) bolus injection. Results show that 7 days of IV exosomes results in clear reduction (30-40%) of infarct size measured at both 7 and 28 days post-MI, despite near identical release of hs Troponin T. Together with reduced infarct size, exosome treatment reduced transmurality and lessened wall thinning in the infarct zone.

View Article and Find Full Text PDF

Myocardial ischemia induces a multifaceted remodeling process in the heart. Novel therapeutic entry points to counteract maladaptive signalling include the modulation of non-coding RNA molecules such as long non-coding RNA (lncRNA). We here questioned if the lncRNA candidate H19 exhibits regulatory potential in the setting of myocardial infarction.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have potential as novel therapeutic targets in cardiovascular diseases, but detailed information about the intercellular lncRNA shuttling mechanisms in the heart is lacking. Here, we report an important novel crosstalk between cardiomyocytes and fibroblasts mediated by the transfer of lncRNA-enriched extracellular vesicles (EVs) in the context of cardiac ischemia. lncRNA profiling identified two hypoxia-sensitive lncRNAs: ENSMUST00000122745 was predominantly found in small EVs, whereas lncRNA Neat1 was enriched in large EVs in vitro and in vivo.

View Article and Find Full Text PDF