Resonant metasurfaces are of paramount importance in addressing the growing demand for reduced thickness and complexity, while ensuring high optical efficiency. This becomes particularly crucial in overcoming fabrication challenges associated with high aspect ratio structures, thereby enabling seamless integration of metasurfaces with electronic components at an advanced level. However, traditional design approaches relying on lookup tables and local field approximations often fail to achieve optimal performance, especially for nonlocal resonant metasurfaces.
View Article and Find Full Text PDFWe introduce a novel technique for designing color filter metasurfaces using a data-driven approach based on deep learning. Our innovative approach employs inverse design principles to identify highly efficient designs that outperform all the configurations in the dataset, which consists of 585 distinct geometries solely. By combining Multi-Valued Artificial Neural Networks and back-propagation optimization, we overcome the limitations of previous approaches, such as poor performance due to extrapolation and undesired local minima.
View Article and Find Full Text PDFThe performance of metasurfaces measured experimentally often discords with expected values from numerical optimization. These discrepancies are attributed to the poor tolerance of metasurface building blocks with respect to fabrication uncertainties and nanoscale imperfections. Quantifying their efficiency drop according to geometry variation are crucial to improve the range of application of this technology.
View Article and Find Full Text PDFOptimization of the performance of flat optical components, also dubbed metasurfaces, is a crucial step towards their implementation in realistic optical systems. Yet, most of the design techniques, which rely on large parameter search to calculate the optical scattering response of elementary building blocks, do not account for near-field interactions that strongly influence the device performance. In this work, we exploit two advanced optimization techniques based on statistical learning and evolutionary strategies together with a fullwave high order Discontinuous Galerkin Time-Domain (DGTD) solver to optimize phase gradient metasurfaces.
View Article and Find Full Text PDF