Objective: Ionizing radiation generates genomic instability by promoting the accumulation of chromosomal rearrangements. The oncogenic translocation RET/PTC1 is present in more than 70% of radiation-induced thyroid cancers. Both RET and CCDC6, the genes implicated in RET/PTC1, are found within common fragile sites - chromosomal regions prone to DNA breakage during slight replication stress.
View Article and Find Full Text PDFHomologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling.
View Article and Find Full Text PDFOver the last decade, CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have emerged as promising anticancer drugs. Numerous studies have demonstrated that CDK4/6 inhibitors efficiently block the pRb-E2F pathway and induce cell cycle arrest in pRb-proficient cells. Based on these studies, the inhibitors have been approved by the FDA for treatment of advanced hormonal receptor (HR) positive breast cancers in combination with hormonal therapy.
View Article and Find Full Text PDFGenome integrity requires replication to be completed before chromosome segregation. The DNA-replication checkpoint (DRC) contributes to this coordination by inhibiting CDK1, which delays mitotic onset. Under-replication of common fragile sites (CFSs), however, escapes surveillance, resulting in mitotic chromosome breaks.
View Article and Find Full Text PDFHeterochromatic regions render the replication process particularly difficult due to the high level of chromatin compaction and the presence of repeated DNA sequences. In humans, replication through pericentromeric heterochromatin requires the binding of a complex formed by the telomeric factor TRF2 and the helicase RTEL1 in order to relieve topological barriers blocking fork progression. Since TRF2 is known to bind the Origin Replication Complex (ORC), we hypothesized that this factor could also play a role at the replication origins (ORI) of these heterochromatin regions.
View Article and Find Full Text PDFCommon fragile sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription could elicit their instability; however, the underlying mechanisms remain elusive. Genome-wide replication timing analyses here show that stress-induced delayed/under-replication is the hallmark of CFSs.
View Article and Find Full Text PDFHard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer.
View Article and Find Full Text PDFThe interplay between replication stress and the S phase checkpoint is a key determinant of genome maintenance, and has a major impact on human diseases, notably, tumour initiation and progression. Recent studies have yielded insights into sequence-dependent and sequence-independent sources of endogenous replication stress. These stresses result in nuclease-induced DNA damage, checkpoint activation and genome-wide replication fork slowing.
View Article and Find Full Text PDFDNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase.
View Article and Find Full Text PDFMammalian cells deficient in ATR or Chk1 display moderate replication fork slowing and increased initiation density, but the underlying mechanisms have remained unclear. We show that exogenous deoxyribonucleosides suppress both replication phenotypes in Chk1-deficient, but not ATR-deficient, cells. Thus, in the absence of exogenous stress, depletion of either protein impacts the replication dynamics through different mechanisms.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the breast cancer subgroup with the most aggressive clinical behavior. Alternatives to conventional chemotherapy are required to improve the survival of TNBC patients. Gene-expression analyses for different breast cancer subtypes revealed significant overexpression of the Timeless-interacting protein (TIPIN), which is involved in the stability of DNA replication forks, in the highly proliferative associated TNBC samples.
View Article and Find Full Text PDFCommon fragile sites (CFSs) are large chromosomal regions long identified by conventional cytogenetics as sequences prone to breakage in cells subjected to replication stress. The interest in CFSs came from their key role in the formation of DNA damage, resulting in chromosomal rearrangements. The instability of CFSs was notably correlated with the appearance of genome instability in precancerous lesions and during tumor progression.
View Article and Find Full Text PDFFaithful DNA replication is essential for the maintenance of genome integrity. Incomplete genome replication leads to DNA breaks and chromosomal rearrangements, which are causal factors in cancer and other human diseases. Despite their importance, the molecular mechanisms that control human genome stability are incompletely understood.
View Article and Find Full Text PDFBreaks at common fragile sites (CFS) are a recognized source of genome instability in pre-neoplastic lesions, but how such checkpoint-proficient cells escape surveillance and continue cycling is unknown. Here we show, in lymphocytes and fibroblasts, that moderate replication stresses like those inducing breaks at CFSs trigger chromatin loading of sensors and mediators of the ATR pathway but fail to activate Chk1 or p53. Consistently, we found that cells depleted of ATR, but not of Chk1, accumulate single-stranded DNA upon Mre11-dependent resection of collapsed forks.
View Article and Find Full Text PDFThe factors that govern replication programs are still poorly identified in metazoans, especially in mammalian cells. Thanks to molecular combing, the dynamics of DNA replication can be assessed at the genome-scale level from the cumulative analysis of single DNA fibers. This technique notably enables measurement of replication fork speed and fork asymmetry and that of distances separating either initiation or termination events.
View Article and Find Full Text PDFCorrect replication of the genome and protection of its integrity are essential for cell survival. In a high-throughput screen studying H2AX phosphorylation, we identified Wee1 as a regulator of genomic stability. Wee1 down-regulation not only induced H2AX phosphorylation but also triggered a general deoxyribonucleic acid (DNA) damage response (DDR) and caused a block in DNA replication, resulting in accumulation of cells in S phase.
View Article and Find Full Text PDFCommon fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks.
View Article and Find Full Text PDFThe coordination of chromatin assembly with DNA replication, which is essential for genomic stability, requires the combined activation of histone deposition with the firing of replication origins. We report here the direct interaction of chromatin assembly factor 1 (CAF1), a key factor involved in histone deposition, with the replication kinase Cdc7-Dbf4. We isolated a complex containing both the largest subunit of CAF1 (p150) and the Cdc7-Dbf4 kinase specifically in S phase and thus prove the existence of this interaction in vivo.
View Article and Find Full Text PDFMaintenance of both genome stability and its structural organization into chromatin are essential to avoid aberrant gene expression that could lead to neoplasia. Genome integrity being threatened by various sources of genotoxic stresses, cells have evolved regulatory mechanisms, termed cell cycle checkpoints. In general, these surveillance pathways are thought to act mainly to coordinate proficient DNA repair with cell cycle progression.
View Article and Find Full Text PDFPolymerase chain reaction (PCR) from paraffin-embedded tissues provides a powerful tool to amplify DNA from a variety of recent and archival material. Because DNA from paraffin-embedded samples is more degraded than from fresh material, the amplification of reference genes is essential to exclude false-negative results. This study describes the use of the proliferative cell nuclear antigen (PCNA) gene as a reference gene in a range of animal species and in humans.
View Article and Find Full Text PDFReplication factor C (RF-C) complex binds to DNA primers and loads PCNA onto DNA, thereby increasing the processivity of DNA polymerases. We have previously identified a distinct region, domain B, in the large subunit of human RF-C (RF-Cp145) which binds to PCNA. We show here that the functional interaction of RF-Cp145 with PCNA is regulated by cdk-cyclin kinases.
View Article and Find Full Text PDFCyclin-dependent kinase (Cdk) Cdk1-Cyclin A can phosphorylate Flap endonuclease 1 (Fen1), a key-enzyme of the DNA replication machinery, in late S phase. Cdk1-cyclin A forms a complex in vitro and in vivo with Fen1. Furthermore, Fen1 phosphorylation is detected in vivo and depends upon Cdks activity.
View Article and Find Full Text PDFDNA replication is carried out by the replisome, which includes several proteins that are targets of cell-cycle-regulated kinases. The phosphorylation of proteins such as replication protein A, DNA polymerase-alpha and -delta, replication factor C, flap endonuclease 1 and DNA ligase I leads to their inactivation, suggesting that phosphorylation is important in the prevention of re-replication. Moreover, the phosphorylation of several of these replication proteins has been shown to block their association with the 'moving platform'-proliferating cell nuclear antigen.
View Article and Find Full Text PDF