Publications by authors named "Stephane Grison"

While AI is widely used in biomedical research and medical practice, its use is constrained to few specific practical areas, e.g., radiomics.

View Article and Find Full Text PDF

Purpose: The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects.

View Article and Find Full Text PDF

Exposure to environmental pollution and the increase in the incidence of multifactorial diseases in the population have become health problems for industrialized countries. In this context, the question of the health impact of exposure to these pollutants is not clearly identified in the low-dose range. This article looks at this problem using the example of preclinical studies of the effects of chronic low-dose exposure to uranium in rats.

View Article and Find Full Text PDF

Male infertility is a major public health issue that can be induced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. Regarding the human population exposed to uranium, it is necessary to explore these effects on male reproduction in multigenerational studies. The sensitivity of mass spectrometry (MS)-based methods has already proved to be extremely useful in metabolite identification in rats exposed to low doses of uranium, but also in human sperm.

View Article and Find Full Text PDF

Changes in metabolomics over time were studied in rats to identify early biomarkers and highlight the main metabolic pathways that are significantly altered in the period immediately following acute low-dose uranium exposure. A dose response relationship study was established from urine and plasma samples collected periodically over 9 months after the exposure of young adult male rats to uranyl nitrate. LC-MS and biostatistical analysis were used to identify early discriminant metabolites.

View Article and Find Full Text PDF

There is increasing evidence that environmental exposures early in fetal development influence phenotype and give rise to disease risk in the next generations. We previously found that lifelong exposure to uranium, an environmental contaminant, induced subtle testicular and hormonal defects; however, its impact on the reproductive system of multiple subsequent generations was unexplored. Herein, rats were exposed to a supra-environmental and non-nephrotoxic concentration of natural uranium (U, 40 mg·L of drinking water) from postnatal life to adulthood (F0), during fetal life (F1), and only as the germ cells from the F1 generation (F2).

View Article and Find Full Text PDF

Protracted radioiodine release may require repeated intake of potassium iodide (KI) to protect thyroid gland. It is well established that iodine excess inhibits transiently the thyroid function. As developing fetus depends on maternal thyroid hormones (TH) supply, more knowledge is needed about the plausible effects that repeated KI intake can cause in this sensitive population, especially that even subtle variation of maternal thyroid function may have persistent consequences on progeny brain processing.

View Article and Find Full Text PDF

To examine the effects of low-dose exposure to uranium with a systems biology approach, a multiscale high-throughput multi-omics analysis was applied with a protocol for chronic exposure to the rat kidney. Male and female rats were contaminated for nine months through their drinking water with a nontoxic solution of uranyl nitrate. A multiscale approach enabled clinical monitoring associated with metabolomic and transcriptomic (mRNA and microRNA) analyses.

View Article and Find Full Text PDF

Existing and future nuclear fusion technologies involve the production and use of large quantities of tritium, a highly volatile, but low toxicity beta-emitting isotope of hydrogen. Tritium has received international attention because of public and scientific concerns over its release to the environment and the potential health impact of its internalization. This article provides a brief summary of the current state of knowledge of both the biological and regulatory aspects of tritium exposure; it also explores the gaps in this knowledge and provides recommendations on the best ways forward for improving our understanding of the health effects of low-level exposure to it.

View Article and Find Full Text PDF

Purpose: A protocol of chronic exposure to low dose of uranium was established in order to distinguish the sexual differences and the developmental process that are critical windows for epigenetic effects over generations.

Methods: Both male and female rats were contaminated through their drinking water with a non-toxic solution of uranyl nitrate for 9 months. The exposed generation (F0) and the following two generations (F1 and F2) were examined.

View Article and Find Full Text PDF

Background: A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI.

View Article and Find Full Text PDF

Despite substantial experimental and epidemiological research, there is limited knowledge of the uranium-induce health effects after chronic low-dose exposures in humans. Biological markers can objectively characterize pathological processes or environmental responses to uranium and confounding agents. The integration of such biological markers into a molecular epidemiological study would be a useful approach to improve and refine estimations of uranium-induced health risks.

View Article and Find Full Text PDF

Introduction: Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake.

Objectives: In a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L; duration: 9 months, n = 10).

View Article and Find Full Text PDF

The presence of Cesium (Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l) and tested contaminations lasting 9 months for adult, neonatal and fetal rats.

View Article and Find Full Text PDF

The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear.

View Article and Find Full Text PDF

Uranium level in drinking water is usually in the range of microgram-per-liter, but this value may be as much as 100 to 1000 times higher in some areas, which may raise question about the health consequences for human populations living in these areas. Our purpose was to improve knowledge of chemical effects of uranium following chronic ingestion. Experiments were performed on rats contaminated for 9 months via drinking water containing depleted uranium (0.

View Article and Find Full Text PDF

Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions.

View Article and Find Full Text PDF

Enzymes that metabolize xenobiotics (XME) are well recognized in experimental models as representative indicators of organ detoxification functions and of exposure to toxicants. As several in vivo studies have shown, uranium can alter XME in the rat liver or kidneys after either acute or chronic exposure. To determine how length or level of exposure affects these changes in XME, we continued our investigation of chronic rat exposure to depleted uranium (DU, uranyl nitrate).

View Article and Find Full Text PDF

Reports have described apparent biological effects of (137)Cs (the most persistent dispersed radionuclide) irradiation in people living in Chernobyl-contaminated territory. The sensitive analytical technology described here should now help assess the relation of this contamination to the observed effects. A rat model chronically exposed to (137)Cs through drinking water was developed to identify biomarkers of radiation-induced metabolic disorders, and the biological impact was evaluated by a metabolomic approach that allowed us to detect several hundred metabolites in biofluids and assess their association with disease states.

View Article and Find Full Text PDF

Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug.

View Article and Find Full Text PDF

The testis is especially sensitive to pollutants, including radionuclides. Following the Chernobyl nuclear power plant accident, several of these radionuclides were emitted and spread in the environment. Subsequently, children presented some disruptions of the endocrine system.

View Article and Find Full Text PDF

The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic.

View Article and Find Full Text PDF

Uranium is a naturally occurring heavy metal found in the Earth's crust. It is an alpha-emitter radioactive element from the actinide group that presents both radiotoxicant and chemotoxicant properties. Some studies revealed that uranium could affect the reproductive system.

View Article and Find Full Text PDF

Kidney disease is a frequent consequence of heavy metal exposure and renal anemia occurs secondarily to the progression of kidney deterioration into chronic disease. In contrast, little is known about effects on kidney of chronic exposure to low levels of depleted uranium (DU). Study was performed with rats exposed to DU at 40 mg/l by chronic ingestion during 9 months.

View Article and Find Full Text PDF

Cardiovascular system impairment has been observed in children and in liquidators exposed to the Chernobyl nuclear power plant accident. No experimental studies of animals have analyzed whether these disorders might be attributed to chronic ingestion of low levels of cesium 137 ((137)Cs). Biochemical, physiological, and molecular markers of the cardiovascular system were analyzed in rats exposed through drinking water to (137)Cs at a dose of 500 Bq kg(-1) (6500 Bq l(-1)).

View Article and Find Full Text PDF