Sleep is a complex and plastic behavior regulated by multiple brain regions and influenced by numerous internal and external stimuli. Thus, to fully uncover the function(s) of sleep, cellular resolution of sleep-regulating neurons needs to be achieved. Doing so will help to unequivocally assign a role or function to a given neuron or group of neurons in sleep behavior.
View Article and Find Full Text PDFFalling asleep at the wrong time can place an individual at risk of immediate physical harm. However, not sleeping degrades cognition and adaptive behavior. To understand how animals match sleep need with environmental demands, we used live-brain imaging to examine the physiological response properties of the dorsal fan-shaped body (dFB) following interventions that modify sleep (sleep deprivation, starvation, time-restricted feeding, memory consolidation) in Drosophila.
View Article and Find Full Text PDFSleep is a very important behavior observed in almost all animals. Importantly, sleep is subject to both circadian and homeostatic regulation. The circadian rhythm determines the daily alternation of the sleep-wake cycle, while homeostasis mediates the rise and dissipation of sleep pressure during the wake and sleep period.
View Article and Find Full Text PDFHumans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage.
View Article and Find Full Text PDFSleep plays an important role in regulating plasticity. In , the relationship between sleep and learning and memory has primarily focused on mushroom body dependent operant-learning assays such as aversive phototaxic suppression and courtship conditioning. In this study, sleep was increased in the classic mutant () and () by feeding them the GABA-A agonist gaboxadol (Gab).
View Article and Find Full Text PDFAntimicrobial peptides act as a host defense mechanism and regulate the commensal microbiome. To obtain a comprehensive view of genes contributing to long-term memory we performed mRNA sequencing from single Drosophila heads following behavioral training that produces long-lasting memory. Surprisingly, we found that Diptericin B, an immune peptide with antimicrobial activity, is upregulated following behavioral training.
View Article and Find Full Text PDFAlthough patients with primary insomnia experience sleep disruption, they are able to maintain normal performance on a variety of cognitive tasks. This observation suggests that insomnia may be a condition where predisposing factors simultaneously increase the risk for insomnia and also mitigate against the deleterious consequences of waking. To gain insight into processes that might regulate sleep and buffer neuronal circuits during sleep loss, we manipulated three genes, (, () and the GABA receptor (), that were differentially modulated in a model of insomnia.
View Article and Find Full Text PDFNeurobiol Sleep Circadian Rhythms
January 2017
To test the hypothesis that sleep can reverse cognitive impairment during Alzheimer's disease, we enhanced sleep in flies either co-expressing human amyloid precursor protein and Beta-secretase (APP:BACE), or in flies expressing human tau. The ubiquitous expression of APP:BACE or human tau disrupted sleep. The sleep deficits could be reversed and sleep could be enhanced when flies were administered the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP).
View Article and Find Full Text PDFIn mammals, evidence for memory reactivation during sleep highlighted the important role that sleep plays in memory consolidation. A new study reports that memory reactivation is evolutionarily conserved and can also be found in the honeybee.
View Article and Find Full Text PDFhas proven to be a powerful model to identify genes and circuits that impact sleep. While the majority of studies have primarily been interested in identifying manipulations that alter sleep time, a growing body of work has begun to focus on how changing sleep influences functional outcomes such as cognitive performance, structural plasticity, and metabolism to name a few. Evaluating sleep time provides an appropriate entry point into elucidating sleep function.
View Article and Find Full Text PDFGiven the role that sleep plays in modulating plasticity, we hypothesized that increasing sleep would restore memory to canonical memory mutants without specifically rescuing the causal molecular lesion. Sleep was increased using three independent strategies: activating the dorsal fan-shaped body, increasing the expression of Fatty acid binding protein (dFabp), or by administering the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Short-term memory (STM) or long-term memory (LTM) was evaluated in rutabaga (rut) and dunce (dnc) mutants using aversive phototaxic suppression and courtship conditioning.
View Article and Find Full Text PDFThe blue-light sensitive photoreceptor cryptochrome (CRY) may act as a magneto-receptor through formation of radical pairs involving a triad of tryptophans. Previous genetic analyses of behavioral responses of Drosophila to electromagnetic fields using conditioning, circadian and geotaxis assays have lent some support to the radical pair model (RPM). Here, we describe a new method that generates consistent and reliable circadian responses to electromagnetic fields that differ substantially from those already reported.
View Article and Find Full Text PDFIndividuals frequently find themselves confronted with a variety of challenges that threaten their wellbeing. While some individuals face these challenges efficiently and thrive (resilient) others are unable to cope and may suffer persistent consequences (vulnerable). Resilience/vulnerability to sleep disruption may contribute to the vulnerability of individuals exposed to challenging conditions.
View Article and Find Full Text PDFBackground: In the fruit fly Drosophila melanogaster, interlocked negative transcription/translation feedback loops provide the core of the circadian clock that generates rhythmic phenotypes. Although the current molecular model portrays the oscillator as cell autonomous, cross-talk among clock neurons is essential for robust cycling behavior. Nevertheless, the functional organization of the neuronal network remains obscure.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2007
The C-terminus of cryptochrome (CRY) regulates light responses in Drosophila. These include the light-dependent binding of Drosophila dCRY to the clock proteins PERIOD and TIMELESS in a yeast two-hybrid system, which we proved to be a convenient and reliable readout of the behavior of dCRY in vivo. In this study, we present a combination of in silico analysis and experimental validation in yeast, to identify novel functional motifs in the C-terminal region of dCRY.
View Article and Find Full Text PDFThe Drosophila melanogaster circadian clock is generated by interlocked feedback loops, and null mutations in core genes such as period and timeless generate behavioral arrhythmicity in constant darkness. In light-dark cycles, the elevation in locomotor activity that usually anticipates the light on or off signals is severely compromised in these mutants. Light transduction pathways mediated by the rhodopsins and the dedicated circadian blue light photoreceptor cryptochrome are also critical in providing the circadian clock with entraining light signals from the environment.
View Article and Find Full Text PDFLight-activated cryptochrome (CRY) regulates circadian photoresponses in Drosophila melanogaster. Removing the carboxy (C) terminus to create CRYDelta produces, in yeast, a light-independent, constitutively active form. Here we show that flies overexpressing CRYDelta have a longer free-running period of locomotor activity, as well as altered cycling kinetics of the clock proteins timeless (TIM) and period (PER).
View Article and Find Full Text PDF