Premature termination codons (PTCs) account for 10 to 20% of genetic diseases in humans. The gene inactivation resulting from PTCs can be counteracted by the use of drugs stimulating PTC readthrough, thereby restoring production of the full-length protein. However, a greater chemical variety of readthrough inducers is required to broaden the medical applications of this therapeutic strategy.
View Article and Find Full Text PDFComput Struct Biotechnol J
May 2021
Ribosome profiling (RiboSeq) has emerged as a powerful technique for studying the genome-wide regulation of translation in various cells. Several steps in the biological protocol have been improved, but the bioinformatics part of RiboSeq suffers from a lack of standardization, preventing the straightforward and complete reproduction of published results. Too many published studies provide insufficient detail about the bioinformatics pipeline used.
View Article and Find Full Text PDFIn eukaryotes, translation termination is performed by eRF1, which recognizes stop codons via its N-terminal domain. Many previous studies based on point mutagenesis, cross-linking experiments or eRF1 chimeras have investigated the mechanism by which the stop signal is decoded by eRF1. Conserved motifs, such as GTS and YxCxxxF, were found to be important for termination efficiency, but the recognition mechanism remains unclear.
View Article and Find Full Text PDFPrions are infectious proteins that can adopt a structural conformation that is then propagated among other molecules of the same protein. [PSI(+)] is an aggregated conformation of the translational release factor eRF3. [PSI(+)] modifies cellular fitness, inducing various phenotypes depending on genetic background.
View Article and Find Full Text PDFRecent crystal structures of xanthine dehydrogenase, xanthine oxidase and related enzymes have paved the way for a detailed structural and functional analysis of these enzymes. One problem encountered when working with these proteins, especially with recombinant protein, is that the preparations tend to be heterogeneous, with only a fraction of the enzyme molecules being active. This is due to the incompleteness of post-translational modification, which for this protein is a complex, and incompletely understood, process involving incorporation of the Mo and Fe/S centres.
View Article and Find Full Text PDF