Publications by authors named "Stephane Coulon"

Premature telomere shortening or telomere instability is associated with a group of rare and heterogeneous diseases collectively known as telomere biology disorders (TBDs). Here we identified two unrelated individuals with clinical manifestations of TBDs and short telomeres associated with the identical monoallelic variant c.767A>G; Y256C in Although the replication protein A2 (RPA2) mutant did not affect ssDNA binding and G-quadruplex-unfolding properties of RPA, the mutation reduced the affinity of RPA2 with the ubiquitin ligase RFWD3 and reduced RPA ubiquitination.

View Article and Find Full Text PDF

The localization of condensin along chromosomes is crucial for their accurate segregation in anaphase. Condensin is enriched at telomeres but how and for what purpose had remained elusive. Here, we show that fission yeast condensin accumulates at telomere repeats through the balancing acts of Taz1, a core component of the shelterin complex that ensures telomeric functions, and Mit1, a nucleosome remodeler associated with shelterin.

View Article and Find Full Text PDF

Telomeres are nucleoprotein complexes that protect the chromosome-ends from eliciting DNA repair while ensuring their complete duplication. Pot1 is a subunit of telomere capping complex that binds to the G-rich overhang and inhibits the activation of DNA damage checkpoints. In this study, we explore new functions of fission yeast Pot1 by using a pot1-1 temperature sensitive mutant.

View Article and Find Full Text PDF

Efficient replication of terminal DNA is crucial to maintain telomere stability. In fission yeast, Taz1 and the Stn1-Ten1 (ST) complex play prominent roles in DNA-ends replication. However, their function remains elusive.

View Article and Find Full Text PDF

Telomere elongation is coupled with genome replication, raising the question of the repair of short telomeres in post-mitotic cells. We investigated the fate of a telomere-repeat capped end that mimics a single short telomere in quiescent fission yeast cells. We show that telomerase is able to elongate this single short telomere during quiescence despite the binding of Ku to the proto-telomere.

View Article and Find Full Text PDF

The Mus81-Eme1 structure-specific endonuclease is crucial for the processing of DNA recombination and late replication intermediates. In fission yeast, stimulation of Mus81-Eme1 in response to DNA damage at the G2/M transition relies on Cdc2CDK1 and DNA damage checkpoint-dependent phosphorylation of Eme1 and is critical for chromosome stability in absence of the Rqh1BLM helicase. Here we identify Rad3ATR checkpoint kinase consensus phosphorylation sites and two SUMO interacting motifs (SIM) within a short N-terminal domain of Eme1 that is required for cell survival in absence of Rqh1BLM.

View Article and Find Full Text PDF

Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein.

View Article and Find Full Text PDF

In , the absence of Pif1 helicase induces the instability of G4-containing CEB1 minisatellite during leading strand but not lagging strand replication. We report that RPA and Pif1 cooperate to maintain CEB1 stability when the G4 forming strand is either on the leading or lagging strand templates. At the leading strand, RPA acts in the same pathway as Pif1 to maintain CEB1 stability.

View Article and Find Full Text PDF

Telomeres are difficult-to-replicate sites whereby replication itself may threaten telomere integrity. We investigate, in fission yeast, telomere replication dynamics in telomerase-negative cells to unmask problems associated with telomere replication. Two-dimensional gel analysis reveals that replication of telomeres is severely impaired and correlates with an accumulation of replication intermediates that arises from stalled and collapsed forks.

View Article and Find Full Text PDF

In mitosis, while the importance of kinetochore (KT)-microtubule (MT) attachment has been known for many years, increasing evidence suggests that telomere dysfunctions also perturb chromosome segregation by contributing to the formation of chromatin bridges at anaphase. Recent evidence suggests that Aurora B kinase ensures proper chromosome segregation during mitosis not only by controlling KT-MT attachment but also by regulating telomere and chromosome arm separation. However, whether and how Aurora B governs telomere separation during meiosis has remained unknown.

View Article and Find Full Text PDF

Despite the condensed nature of terminal sequences, the telomeres are transcribed into a group of noncoding RNAs, including the TElomeric Repeat-containing RNA (TERRA). Since the discovery of TERRA, its evolutionary conserved function has been confirmed, and its involvement in telomere length regulation, heterochromatin establishment, and telomere recombination has been demonstrated. We previously reported that TERRA is upregulated in quiescent fission yeast cells, although the global transcription is highly reduced.

View Article and Find Full Text PDF

Telomere anchoring to nuclear envelope (NE) is a key feature of nuclear genome architecture. Peripheral localization of telomeres is important for chromatin silencing, telomere replication and for the control of inappropriate recombination. Here, we report that fission yeast quiescent cells harbor predominantly a single telomeric cluster anchored to the NE.

View Article and Find Full Text PDF

Telomeres, the protective ends of eukaryotic chromosomes, are replicated through concerted actions of conventional DNA polymerases and elongated by telomerase, but the regulation of this process is not fully understood. Telomere replication requires (Ctc1/Cdc13)-Stn1-Ten1, a telomeric ssDNA-binding complex homologous to RPA Here, we show that the evolutionarily conserved phosphatase Ssu72 is responsible for terminating the cycle of telomere replication in fission yeast. Ssu72 controls the recruitment of Stn1 to telomeres by regulating Stn1 phosphorylation at Ser74, a residue located within its conserved OB-fold domain.

View Article and Find Full Text PDF

Photoaffinity labeling (PAL) in combination with recent developments in mass spectrometry is a powerful tool for studying nucleic acid-protein interactions, enabling crosslinking of both partners through covalent bond formation. Such a strategy requires a preliminary study of the most judicious photoreactive group to crosslink efficiently with the target protein. In this study, we report a survey of three different photoreactive nucleobases (including a guanine functionalized with a benzophenone or a diazirine and the zero-length agent 4-thiothymine) incorporated in 30-mer oligonucleotides (ODN) containing a biotin moiety for selective trapping and enrichment of single-stranded DNA binding proteins (SSB).

View Article and Find Full Text PDF

Mammalian CST (CTC1-STN1-TEN1) complex fulfills numerous functions including rescue of the stalled replication forks and termination of telomerase action. In fission yeast lacking the CTC1 ortholog, the Stn1-Ten1 complex restricts telomerase action via its sumoylation-mediated interaction with Tpz1. We identify a small ubiquitin-like modifier (SUMO)-interacting motif (SIM) in the carboxyl-terminal part of Stn1 and show that this domain is crucial for SUMO and Tpz1-SUMO interactions.

View Article and Find Full Text PDF

Telomere maintenance mechanism is poorly studied in quiescence, a reversible non-proliferative state. We previously described in fission yeast a new mode of repair of telomeres named STEEx, that specifically operates in post-mitotic cells harboring eroded telomeres. This mechanism, promoted by transcription-induced telomeric recombination, prevents cells to exit properly from quiescence, suggesting that STEEx act as an anti-proliferative barrier.

View Article and Find Full Text PDF

While the mechanisms of telomere maintenance has been investigated in dividing cells, little is known about the stability of telomeres in quiescent cells and how dysfunctional telomeres are processed in non-proliferating cells. Here we examine the stability of telomeres in quiescent cells using fission yeast. While wild type telomeres are stable in quiescence, we observe that eroded telomeres were highly rearranged during quiescence in telomerase minus cells.

View Article and Find Full Text PDF

Telomeres are complex nucleoprotein structures that protect the extremities of linear chromosomes. Telomere replication is a major challenge because many obstacles to the progression of the replication fork are concentrated at the ends of the chromosomes. This is known as the telomere replication problem.

View Article and Find Full Text PDF

Telomeres are transcribed in long noncoding RNA named TERRA. Although TERRA functions have been extensively investigated, the role of TERRA in telomerase recruitment and regulation is still elusive. In this issue of EMBO , Moravec report in that telomere shortening induces the expression of TERRA 1.

View Article and Find Full Text PDF

Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination, and repair. In fission yeast, the Rpa1-D223Y mutation provokes telomere shortening. Here, we show that this mutation impairs lagging-strand telomere replication and leads to the accumulation of secondary structures and recruitment of the homologous recombination factor Rad52.

View Article and Find Full Text PDF
Article Synopsis
  • Structure-specific DNA endonucleases are key players in DNA processes like replication, but they can also lead to genome instability if not properly controlled.
  • Recent research has shown that in fission yeast, the Mus81-Eme1 resolvase is activated in response to DNA damage, a process dependent on specific phosphorylation events.
  • This activation helps prevent harmful chromosomal rearrangements, particularly in cells lacking a certain helicase, by ensuring that DNA structures are resolved efficiently while minimizing unintended DNA damage.
View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase.

View Article and Find Full Text PDF

Exposure of Escherichia coli to UV light increases expression of NrdAB, the major ribonucleotide reductase leading to a moderate increase in dNTP levels. The role of elevated dNTP levels during translesion synthesis (TLS) across specific replication-blocking lesions was investigated. Here we show that although the specialized DNA polymerase PolV is necessary for replication across UV-lesions, such as cyclobutane pyrimidine dimers or pyrimidine(6-4)pyrimidone photoproduct, Pol V per se is not sufficient.

View Article and Find Full Text PDF

Lagging-strand and leading-strand synthesis of chromosomes generates two structurally distinct ends at the telomeres. Based on sequence bias of yeast telomeres that contain a 250-300 bp array of C(1-3)A/ TG(1-3) repeats, we developed a method allowing us to distinguish which of the two daughter telomeres chromosome end-binding proteins bind to at the end of S phase. The single-stranded DNA-binding protein Cdc13 and the telomerase subunits Est1 and Est2 can bind to the two daughter telomeres, but only their binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex involved in both telomeric 5' nucleolytic resection and telomerase recruitment at short telomeres.

View Article and Find Full Text PDF

Replicative DNA polymerases duplicate genomes in a very efficient and accurate mode. However their progression can be blocked by DNA lesions since they are unable to accommodate bulky damaged bases in their active site. In response to replication blockage, monoubiquitination of PCNA promotes the switch between replicative and specialized polymerases proficient to overcome the obstacle.

View Article and Find Full Text PDF