Publications by authors named "Stephane Costeux"

We study the solvation of a single nanoparticle in poly(methyl methacrylate)-CO2 mixture at coexistence by using statistical classical density-functional theory. In the temperature range where there is triple-phase coexistence, the lowest solvation free energy occurs at the triple point pressure. Beyond the end point temperature of the triple line, and for particle radii less than a critical value, there is an optimal pressure in the solvation free energy, as a result of the competition between the creation of nanoparticle-fluid interface and the formation of cavity volume.

View Article and Find Full Text PDF

We combine density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in two polymer–CO2 mixture systems, poly(methyl methacrylate) (PMMA)–CO2 and polystyrene (PS)–CO2. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient condition. Below a critical temperature (Tc), we find that there is a discontinuous drop in the nucleation barrier as a function of increased initial CO2 pressure (P0), as a result of an underlying metastable transition from a CO2-rich-vapor phase to a CO2-rich-liquid phase.

View Article and Find Full Text PDF

We combine a newly developed density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in compressible polymer-CO2 mixtures. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient condition. Below a critical temperature, we find that there is a discontinuous drop in the nucleation barrier with increased initial CO2 pressure, as a result of an underlying metastable transition from a CO2-rich-vapor phase to a CO2-rich-liquid phase.

View Article and Find Full Text PDF

We propose a density-functional theory (DFT) describing inhomogeneous polymer-carbon dioxide mixtures based on a perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS). The weight density functions from fundamental measure theory are used to extend the bulk excess Helmholtz free energy to the inhomogeneous case. The additional long-range dispersion contributions are included using a mean-field approach.

View Article and Find Full Text PDF