Publications by authors named "Stephane Collin"

Memristor-based neural networks provide an exceptional energy-efficient platform for artificial intelligence (AI), presenting the possibility of self-powered operation when paired with energy harvesters. However, most memristor-based networks rely on analog in-memory computing, necessitating a stable and precise power supply, which is incompatible with the inherently unstable and unreliable energy harvesters. In this work, we fabricated a robust binarized neural network comprising 32,768 memristors, powered by a miniature wide-bandgap solar cell optimized for edge applications.

View Article and Find Full Text PDF

Improving the stability of lead halide perovskite solar cells (PSCs) for industrialization is currently a major challenge. It is shown that moisture induces changes in global PSC performance, altering the nature of the absorber through phase transition or segregation. Understanding how the material evolves in a wet environment is crucial for optimizing device performance and stability.

View Article and Find Full Text PDF

With their unique structural, optical and electrical properties, III-V nanowires (NWs) are an extremely attractive option for the direct growth of III-Vs on Si for tandem solar cell applications. Here, we introduce a core-shell GaAs/GaInP NW solar cell grown by molecular beam epitaxy on a patterned Si substrate, and we present an in-depth investigation of its optoelectronic properties and limitations. We report a power conversion efficiency of almost 3.

View Article and Find Full Text PDF

To upscale the emerging perovskite photovoltaic technology to larger-size modules, industrially relevant deposition techniques need to be developed. In this work, the deposition of tin oxide used as an electron extraction layer is established using chemical bath deposition (CBD), a low-cost and solution-based fabrication process. Applying this simple low-temperature deposition method, highly homogeneous SnO films are obtained in a reproducible manner.

View Article and Find Full Text PDF

Cathodoluminescence mapping is used as a contactless method to probe the electron concentration gradient of Te-doped GaAs nanowires. The room temperature and low temperature (10 K) cathodoluminescence analysis method previously developed for GaAs:Si is first validated on five GaAs:Te thin film samples, before extending it to the two GaAs:Te NW samples. We evidence an electron concentration gradient ranging from below 1 × 10cmto 3.

View Article and Find Full Text PDF

Perovskite/silicon tandem modules have recently attracted growing interest as a potential candidate for new generations of solar modules. Combined with a bifacial configuration it can lead to considerable energy yield improvement in comparison to conventional monofacial tandem solar modules. Optical modeling is crucial to analyze the optical losses of perovskite/silicon solar modules and achieve efficient light management.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the electrical and optical properties of single GaN nanowire p-n junctions created through plasma-assisted molecular-beam epitaxy with magnesium and silicon as doping sources.
  • It compares different junction structures (n-base vs. p-base) using various analytical techniques, highlighting that n-base structures display more wire-to-wire shape variation due to radial growth influenced by magnesium doping.
  • By switching to p-base junctions, researchers achieved a more consistent and well-defined structure while maintaining good optical quality and high hole concentration without damaging the nanowire's shape.
View Article and Find Full Text PDF

We report the first investigation of indium (In) as the vapor-liquid-solid catalyst of GaP and InGaAs nanowires by molecular beam epitaxy. A strong asymmetry in the Ga distribution between the liquid and solid phases allows one to obtain pure GaP and In0.2Ga0.

View Article and Find Full Text PDF

Axial p-n and p-i-n junctions in GaAsP nanowires are demonstrated and analyzed using electron beam induced current microscopy. Organized self-catalyzed nanowire arrays are grown by molecular beam epitaxy on nanopatterned Si substrates. The nanowires are doped using Be and Si impurities to obtain p- and n-type conductivity, respectively.

View Article and Find Full Text PDF

Surface plasmon resonance imaging (SPRI) is a powerful label-free imaging modality for the analysis of morphological dynamics in cell monolayers. However, classical plasmonic imaging systems have relatively poor spatial resolution along one axis due to the plasmon mode attenuation distance (tens of μm, typically), which significantly limits their ability to resolve subcellular structures. We address this limitation by adding an array of nanostructures onto the metal sensing surface (25 nm thick, 200 nm width, 400 nm period grating) to couple localized plasmons with propagating plasmons, thereby reducing attenuation length and commensurately increasing spatial imaging resolution, without significant loss of sensitivity or image contrast.

View Article and Find Full Text PDF

We report on the detailed composition of ternary GaAsP nanowires (NWs) grown using self-catalyzed vapor-liquid-solid (VLS) growth by molecular beam epitaxy. We evidence the formation of an unintentional shell, which enlarges by vapor-solid growth concurrently to the main VLS-grown core. The NW core and unintentional shell have typically different chemical compositions if no effort is made to adjust the growth conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the electrical and optical properties of n-GaN nanowires that contain GaN/AlN quantum discs, utilizing techniques like single wire I(V) measurements, electron beam induced current microscopy (EBIC), and cathodoluminescence (CL) analysis to understand their performance at a nanoscale level.
  • - Findings indicate that unintentional AlN and GaN shells significantly affect the electrical resistance of the nanowires, revealing two regions with electric fields oriented oppositely, which can change under external bias conditions.
  • - Photoluminescence and CL measurements show that the presence of the radial shell leads to a blue shift in the emission from the bottom of the nanowire, while the intensity
View Article and Find Full Text PDF
Article Synopsis
  • Photovoltaic generation has dramatically increased over the past ten years, now supplying about 1.7% of global electricity and emerging as a key player in the energy transition.
  • Advances in materials and production techniques have significantly contributed to this growth, but challenges remain in achieving clean, affordable energy through solar technology.
  • The Japan-French cooperation program, NextPV, explores innovative solar cell technologies, including multijunction and ultrathin cells, and focuses on developing printable materials like colloidal quantum dots.
View Article and Find Full Text PDF

By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V ) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for measuring doping levels in n-type III-V semiconductors at the nanoscale using cathodoluminescence (CL) is introduced.
  • Low and room temperature CL measurements on Si-doped GaAs nanowires reveal changes in energy levels and luminescence broadening due to increased electron density.
  • The findings demonstrate that CL effectively assesses carrier concentrations and can identify variations in doping across nanostructures.
View Article and Find Full Text PDF

Ultrathin c-Si solar cells have the potential to drastically reduce costs by saving raw material while maintaining good efficiencies thanks to the excellent quality of monocrystalline silicon. However, efficient light trapping strategies must be implemented to achieve high short-circuit currents. We report on the fabrication of both planar and patterned ultrathin c-Si solar cells on glass using low temperature (T < 275 °C), low-cost, and scalable techniques.

View Article and Find Full Text PDF

Highly transparent and conductive materials are required for many industrial applications. One of the interesting features of ZnO is the possibility to dope it using different elements, hence improving its conductivity. Results concerning the zinc oxide thin films electrodeposited in a zinc perchlorate medium containing a boron precursor are presented in this study.

View Article and Find Full Text PDF

Nanorod arrays with diameters much smaller than the wavelength exhibit sharp resonances with strong electric-field enhancement and angular dependence. They are investigated for enhanced infrared spectroscopy of molecular bonds. The molecule 3-cyanopropyldimethylchlorosilane (CS) is taken as a reference, and its complex permittivity is determined experimentally in the 3-5 μm wavelength range.

View Article and Find Full Text PDF

Mechanical vibrational resonances in metal nanoparticles are intensively studied because they provide insight into nanoscale elasticity and for their potential application to ultrasensitive mass detection. In this paper, we use broadband femtosecond pump-probe spectroscopy to study the longitudinal acoustic phonons of arrays of gold nanorods with different aspect ratios, fabricated by electron beam lithography with very high size uniformity. We follow in real time the impulsively excited extensional oscillations of the nanorods by measuring the transient shift of the localized surface plasmon band.

View Article and Find Full Text PDF

This paper presents the low cost electrodeposition of a transparent and conductive chlorine doped ZnO layer with performances comparable to that produced by standard vacuum processes. First, an in-depth study of the defect physics by ab-initio calculation shows that chlorine is one of the best candidates to dope the ZnO. This result is experimentally confirmed by a complete optical analysis of the ZnO layer deposited in a chloride rich solution.

View Article and Find Full Text PDF

We report on multiple extraordinary optical extinction (EOE) phenomena achieved through encapsulated dual metallic gratings. They are evidenced in TM polarization by angularly and spectrally resolved transmission measurements in the mid-infrared wavelength range. We show that EOE can be achieved on both sides of the extraordinary optical transmission (EOT) resonance, leading to pass-band filters with an improved rejection rate.

View Article and Find Full Text PDF

Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light-matter interactions in sub-wavelength nanostructure arrays.

View Article and Find Full Text PDF

We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or guided modes via grating coupling.

View Article and Find Full Text PDF

We theoretically study metal-dielectric structures made of bi-atomic metallic gratings coupled to a guided-mode dielectric resonator. The bi-atomic pattern grating allows tailoring of the Fourier spectrum of the inverse grating permittivity in order to adapt the frequency gap and obtain a flat dispersion band over a wide angular range. A significant enhancement (two-fold) of the angular tolerance as compared to a simply periodic structure is obtained.

View Article and Find Full Text PDF

We demonstrate that almost 100% of incident photons can interact with a monolayer of scatterers in a symmetrical environment. Nearly perfect optical extinction through free-standing transparent nanorod arrays has been measured. The sharp spectral opacity window, in the form of a characteristic Fano resonance, arises from the coherent multiple scattering in the array.

View Article and Find Full Text PDF