Parkinson's disease (PD) is a common neurodegenerative disorder which affects dopaminergic neurons leading to alteration of numerous cellular pathways. Several reports highlight that PD disturbs also other cells than CNS neurons including PBMCs, which could lead, among other things, to dysfunctions of immune functions. Because autophagy could be altered in PD, a monocentric pilot study was performed to quantify the transcripts levels of several autophagy genes in blood cells.
View Article and Find Full Text PDFObjective: We measure the transcript levels of the proapoptotic GALIG, antiapoptotic MCL1 genes and those of the autophagy genes BECN1, MAP1LC3B, ATG9a, P62/SQSTM1, GABARAP, GABARAPL1 and GABARAPL2 to define if mRNA alteration can characterize HIV-infected patients effectively treated with combined antiretroviral therapy (cART).
Design: Monocentric pilot study conducted on peripheral blood mononuclear cell (PBMC) of 40 uninfected donors and 27 HIV-positive patients effectively treated by cART for at least 8.4 years.
GALIG, an internal gene to the human galectin-3 gene, encodes two distinct proteins, Mitogaligin and Cytogaligin through translation of a unique mRNA in two overlapping alternative reading frames. When overexpressed GALIG induces apoptosis. In cultured cells, Mitogaligin destabilizes mitochondria membranes through interaction with cardiolipin.
View Article and Find Full Text PDFObjective There appears to be differences in the clinical presentation of hereditary angioedema (HAE) and angiotensin-converting enzyme inhibitor-induced (ACE-I) angioedema (AE). The aim of this study was to compare the clinical characteristics of these two AE forms. Methods We conducted a retrospective study of consecutive patients with HAE or ACE-I AE.
View Article and Find Full Text PDFGALIG gene expression induces apoptosis in cultured cells through a pathway still under investigation. It is highly expressed in leukocytes but weakly detectable in bone marrow, suggesting a role in the myeloid lineage homeostasis. We show here that GALIG-induced cell death is counteracted by the overexpression of MCL-1, a pro-survival member of the Bcl2 family.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2010
Mitogaligin, a protein encoded by galig, an internal cytotoxic gene of the galectin-3 locus, is mostly a mitochondrial protein. Mitochondrial targeting is due to an already identified mitochondrial localization signal. Interaction of mitogaligin with mitochondria leads to cytochrome c cytosolic leakage and ultimately to cell death.
View Article and Find Full Text PDFSequential detections of different proteins on Western blot save time and precious samples. The main problem concerning reprobing is that stripping buffers can unbind both the antibody and the tested antigen. An original reprobing method has been set up based on horseradish peroxidase (HRP) inhibition after enhanced chemiluminescence detection.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2009
Galig, an internal gene to the galectin-3 gene, encodes two proteins and induces cell death in human cells. Mitogaligin, one of these proteins, contains a mitochondrial targeting sequence and promotes the release of cytochrome c into the cytosol. Here, we show that mitogaligin can also localize to nucleus.
View Article and Find Full Text PDFGalig, a gene embedded within the galectin-3 gene, induces cell death when transfected in human cells. This death is associated with cell shrinkage, nuclei condensation, and aggregation of mitochondria. Galig contains two different overlapping open reading frames encoding two unrelated proteins.
View Article and Find Full Text PDFGalectin-3 internal gene (Galig) was recently identified as an internal gene transcribed from the second intron of the human galectin-3 gene that is implicated in cell growth, cell differentiation, and cancer development. In this study, we show that galig expression causes morphological alterations in human cells, such as cell shrinkage, cytoplasm vacuolization, nuclei condensation, and ultimately cell death. These alterations were associated with extramitochondrial release of cytochrome c, a known cell death effector.
View Article and Find Full Text PDF