Publications by authors named "Stephane Canu"

Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess brain tumor. Accurately segmenting brain tumor from MR images is the key to clinical diagnostics and treatment planning. In addition, multi-modal MR images can provide complementary information for accurate brain tumor segmentation.

View Article and Find Full Text PDF

The coronavirus disease (COVID-19) pandemic has led to a devastating effect on the global public health. Computed Tomography (CT) is an effective tool in the screening of COVID-19. It is of great importance to rapidly and accurately segment COVID-19 from CT to help diagnostic and patient monitoring.

View Article and Find Full Text PDF

This paper presents a 3D brain tumor segmentation network from multi-sequence MRI datasets based on deep learning. We propose a three-stage network: generating constraints, fusion under constraints and final segmentation. In the first stage, an initial 3D U-Net segmentation network is introduced to produce an additional context constraint for each tumor region.

View Article and Find Full Text PDF

Structuring raw medical documents with ontology mapping is now the next step for medical intelligence. Deep learning models take as input mathematically embedded information, such as encoded texts. To do so, word embedding methods can represent every word from a text as a fixed-length vector.

View Article and Find Full Text PDF

Background: Word embedding technologies, a set of language modeling and feature learning techniques in natural language processing (NLP), are now used in a wide range of applications. However, no formal evaluation and comparison have been made on the ability of each of the 3 current most famous unsupervised implementations (Word2Vec, GloVe, and FastText) to keep track of the semantic similarities existing between words, when trained on the same dataset.

Objective: The aim of this study was to compare embedding methods trained on a corpus of French health-related documents produced in a professional context.

View Article and Find Full Text PDF
Learning SVM in Kreĭn Spaces.

IEEE Trans Pattern Anal Mach Intell

June 2016

This paper presents a theoretical foundation for an SVM solver in Kreĭn spaces. Up to now, all methods are based either on the matrix correction, or on non-convex minimization, or on feature-space embedding. Here we justify and evaluate a solution that uses the original (indefinite) similarity measure, in the original Kreĭn space.

View Article and Find Full Text PDF

Building an accurate training database is challenging in supervised classification. For instance, in medical imaging, radiologists often delineate malignant and benign tissues without access to the histological ground truth, leading to uncertain data sets. This paper addresses the pattern classification problem arising when available target data include some uncertainty information.

View Article and Find Full Text PDF

Recently, there has been much interest around multitask learning (MTL) problem with the constraints that tasks should share a common sparsity profile. Such a problem can be addressed through a regularization framework where the regularizer induces a joint-sparsity pattern between task decision functions. We follow this principled framework and focus on l(p)-l(q) (with 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2) mixed norms as sparsity-inducing penalties.

View Article and Find Full Text PDF

Asthma is a distressing disease, affecting up to 7% of the French population and causing considerable morbidity and mortality. A medical decision support system such can help physicians to control this chronic disease. Thanks to the health care network (RESALIS) of Fedialis Médica (disease management branch from GlaxoSmithKline), asthma consultation data were collected to exploit them.

View Article and Find Full Text PDF