Publications by authors named "Stephane Ansieau"

The quest for targeted therapies is critical in the battle against cancer. The RAS/MAP kinase pathway is frequently implicated in neoplasia, with ERK playing a crucial role as the most distal kinase in the RAS signaling cascade. Our previous research demonstrated that the interaction between ERK and MYD88, an adaptor protein in innate immunity, is crucial for RAS-dependent transformation and cancer cell survival.

View Article and Find Full Text PDF

Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are considered to be the main drivers of inflammatory bowel disease. We investigated whether this permanent insult compels intestinal stem cells to develop strategies to dampen the deleterious effects of ROS. As an adverse effect, this adaptation process may increase their tolerance to oncogenic insults and facilitate their neoplastic transformation.

View Article and Find Full Text PDF

The kynurenine pathway has been highlighted as a gatekeeper of immune-privileged sites through its ability to generate from tryptophan a set of immunosuppressive metabolic intermediates. It additionally constitutes an important source of cellular NAD for the organism. Hijacking of its immunosuppressive functions, as recurrently observed in multiple cancers, facilitates immune evasion and promotes tumor development.

View Article and Find Full Text PDF

Our previous work demonstrated a key function of the thyroid hormone nuclear receptor TRα1, a T3-modulated transcription factor, in controlling intestinal development and homeostasis the Wnt and Notch pathways. Importantly, increased expression of TRα1 in the intestinal epithelium in a mutated genetic background (-TRα1/Apc mice) accelerated tumorigenesis and contributed to a more aggressive tumor phenotype compared to that of the mutants alone. Therefore, the aim of this study was to determine the relevance of this synergistic effect in human colorectal cancers and to gain insights into the mechanisms involved.

View Article and Find Full Text PDF

Background: The bHLH transcription factor TWIST1 plays a key role in the embryonic development and in tumorigenesis. Some loss-of-function mutations of the TWIST1 gene have been shown to cause an autosomal dominant craniosynostosis, known as the Saethre-Chotzen syndrome (SCS). Although the functional impacts of many TWIST1 mutations have been experimentally reported, little is known on the molecular mechanisms underlying their loss-of-function.

View Article and Find Full Text PDF

Chromosomal instability (CIN), a feature of most adult neoplasms from their early stages onward, is a driver of tumorigenesis. However, several malignancy subtypes, including some triple-negative breast cancers, display a paucity of genomic aberrations, thus suggesting that tumor development may occur in the absence of CIN. Here we show that the differentiation status of normal human mammary epithelial cells dictates cell behavior after an oncogenic event and predetermines the genetic routes toward malignancy.

View Article and Find Full Text PDF

Targeted therapies with MAPK inhibitors (MAPKi) are faced with severe problems of resistance in BRAF-mutant melanoma. In parallel to the acquisition of genetic mutations, melanoma cells may also adapt to the drugs through phenotype switching. The ZEB1 transcription factor, a known inducer of EMT and invasiveness, is now considered as a genuine oncogenic factor required for tumor initiation, cancer cell plasticity, and drug resistance in carcinomas.

View Article and Find Full Text PDF

The TWIST1 embryonic transcription factor displays biphasic functions during the course of carcinogenesis. It facilitates the escape of cells from oncogene-induced fail-safe programs (senescence, apoptosis) and their consequent neoplastic transformation. Additionally, it promotes the epithelial-to-mesenchymal transition and the initiation of the metastatic spread of cancer cells.

View Article and Find Full Text PDF

The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences.

View Article and Find Full Text PDF

The transcription accessory factor TIF1γ/TRIM33/RFG7/PTC7/Ectodermin functions as a tumor suppressor that promotes development and cellular differentiation. However, its precise function in cancer has been elusive. In the present study, we report that TIF1γ inactivation causes cells to accumulate chromosomal defects, a hallmark of cancer, due to attenuations in the spindle assembly checkpoint and the post-mitotic checkpoint.

View Article and Find Full Text PDF

Introduction: Tumor-initiating cells (TICs), aka "cancer stem cells", are believed to fuel tumors and to sustain therapy resistance and systemic metastasis. Breast cancer is the first human carcinoma in which a subpopulation of cells displaying a specific CD44+/CD24-/low/ESA+ antigenic phenotype was found to have TIC properties. However, CD44+/CD24-/low/ESA+ is not a universal marker phenotype of TICs in all breast cancer subtypes.

View Article and Find Full Text PDF

By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT), SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells.

View Article and Find Full Text PDF

The transcription factor TWIST1 induces epithelial-mesenchymal transition and/or escape to the oncogenic-induced failsafe program, facilitating the intravasation of breast cancer cells in the systemic circulation and their dissemination to the lungs. Its involvement in breast cancer bone metastasis is unknown. To address this question, human osteotropic MDA-MB-231/B02 breast cancer cells were stably transfected with a Tet-inducible vector encoding for TWIST1, whose expression was specifically repressed in the presence of doxycycline (dox).

View Article and Find Full Text PDF

Aberrant expression of embryonic epithelial-mesenchymal transition-inducing transcription factors (EMT-TFs) in epithelial cells triggers EMT, neoplastic transformation, stemness, and metastatic dissemination. We found that regulation and functions of EMT-TFs are different in malignant melanoma. SNAIL2 and ZEB2 transcription factors are expressed in normal melanocytes and behave as tumor-suppressor proteins by activating an MITF-dependent melanocyte differentiation program.

View Article and Find Full Text PDF

Expression of developmental genes Twist1 and Twist2 is reactivated in many human tumors. Among their oncogenic activities, induction of epithelial to mesenchymal transition is believed to increase cell motility and invasiveness and may be related to acquisition of cancer stem cell phenotype. In addition, Twist proteins promote malignant conversion by overriding two oncogene-induced failsafe programs: senescence and apoptosis.

View Article and Find Full Text PDF

The basic helix-loop-helix (bHLH) transcription factor TWIST1 is essential to embryonic development, and hijacking of its function contributes to the development of numerous cancer types. It forms either a homodimer or a heterodimeric complex with an E2A or HAND partner. These functionally distinct complexes display sometimes antagonistic functions during development, so that alterations in the balance between them lead to pronounced morphological alterations, as observed in mice and in Saethre-Chotzen syndrome patients.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT-inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways.

View Article and Find Full Text PDF

The concept of cancer stem cells (CSCs) has been proposed to explain the ability of single disseminated cancer cells to reconstitute tumours with heterogeneity similar to that of the primary tumour they arise from. Although this concept is now commonly accepted, the origin of these CSCs remains a source of debate. First proposed to arise through stem/progenitor cell transformation, CSCs might also or alternatively arise from differentiated cancer cells through epithelial to mesenchymal transition (EMT), an embryonic transdifferentiation process.

View Article and Find Full Text PDF

Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT).

View Article and Find Full Text PDF

The epithelial to mesenchymal transition (EMT) is a latent embryonic process which can be aberrantly reactivated during tumor progression. It is generally viewed as one of the main forces driving metastatic dissemination, by providing cells with invasive and motility capabilities. The aberrant reactivation of embryonic EMT inducers has now been additionally linked to escape from senescence and apoptosis, which suggests a role in tumor initiation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionll2dqdpfl4n039vhm7vpemjj1civqsqp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once