Publications by authors named "Stephane Abanades"

The chemical looping reforming of methane using an SrFeO oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to producing syngas. The two-step isothermal process encompassed partial perovskite reduction with methane (partial oxidation of CH) and exothermic oxidation of SrFeO with CO or HO splitting under the same operating temperature.

View Article and Find Full Text PDF

This study focuses on the generation of solar thermochemical fuel (hydrogen, syngas) from CO and HO molecules via two-step thermochemical cycles involving intermediate oxygen-carrier redox materials. Different classes of redox-active compounds based on ferrite, fluorite, and perovskite oxide structures are investigated, including their synthesis and characterization associated with experimental performance assessment in two-step redox cycles. Their redox activity is investigated by focusing on their ability to perform the splitting of CO during thermochemical cycles while quantifying fuel yields, production rates, and performance stability.

View Article and Find Full Text PDF

Redox materials have been investigated for various thermochemical processing applications including solar fuel production (hydrogen, syngas), ammonia synthesis, thermochemical energy storage, and air separation/oxygen pumping, while involving concentrated solar energy as the high-temperature process heat source for solid-gas reactions. Accordingly, these materials can be processed in two-step redox cycles for thermochemical fuel production from HO and CO splitting. In such cycles, the metal oxide is first thermally reduced when heated under concentrated solar energy.

View Article and Find Full Text PDF

Empty fruit bunch (EFB) from oil palm is a solid agricultural bio-waste obtained from the edible oil process. Continuous solar-driven gasification of EFB offers a bright carbon-neutral avenue to convert both EFB bio-waste and renewable solar energy into sustainable and clean syngas. High-temperature concentrated solar heat is used to provide the reaction enthalpy, and therefore biomass waste feedstock is entirely dedicated to produce hydrogen and carbon monoxide (syngas).

View Article and Find Full Text PDF

We report the first ever robocast (additive manufacturing/3D printing) sintered ceria scaffolds, and explore their use for the production of renewable fuels solar thermochemical fuel production (STFP, water and carbon dioxide splitting using concentrated solar energy). CeO catalyst scaffolds were fabricated as 50 mm diameter discs (struts and voids ∼500 μm), sintered at 1450 °C, with specific surface area of 1.58 m g.

View Article and Find Full Text PDF

This review explores the advances in the synthesis of ceria materials with specific morphologies or porous macro- and microstructures for the solar-driven production of carbon monoxide (CO) from carbon dioxide (CO). As the demand for renewable energy and fuels continues to grow, there is a great deal of interest in solar thermochemical fuel production (STFP), with the use of concentrated solar light to power the splitting of carbon dioxide. This can be achieved in a two-step cycle, involving the reduction of CeO at high temperatures, followed by oxidation at lower temperatures with CO, splitting it to produce CO, driven by concentrated solar radiation obtained with concentrating solar technologies (CST) to provide the high reaction temperatures of typically up to 1,500°C.

View Article and Find Full Text PDF

The kinetic rate laws of heavy metal (HM) vaporization from municipal solid waste during its incineration were studied. Realistic artificial waste (RAW) samples spiked with Pb, Zn, and Cd were injected into a fluidized bed reactor. Metal vaporization wastracked by continuous measure ofthe above metals in exhaust gases.

View Article and Find Full Text PDF

Metal vaporization experiments were carried out in an atmospheric fluidized bed to study the influence of operating conditions on the extent of heavy metal (HM) release in fumes from municipal solid waste incinerators. Modelwastes spiked with compounds of Pb, Cd, and Zn were used. The parameters studied were temperature, treatment duration, matrix of the model waste (mineral and organic), HM initial speciation, and gas composition (N2, air, air + HCl, gas mixture simulating the incinerators).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0hgaiaaegsu3pcb2euofqb13sij5m695): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once