The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear.
View Article and Find Full Text PDFIn animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles.
View Article and Find Full Text PDFBacteria use type III secretion injectisomes to inject effector proteins into eukaryotic target cells. Recruitment of effectors to the machinery and the resulting export hierarchy involve the sorting platform. These conserved proteins form pod structures at the cytosolic interface of the injectisome but are also mobile in the cytosol.
View Article and Find Full Text PDFMany bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach.
View Article and Find Full Text PDFThe type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs.
View Article and Find Full Text PDFMany pathogenic bacteria use the type III secretion system (T3SS) injectisome to manipulate host cells by injecting virulence-promoting effector proteins into the host cytosol. The T3SS is activated upon host cell contact, and its activation is accompanied by an arrest of cell division; hence, many species maintain a T3SS-inactive sibling population to propagate efficiently within the host. The enteric pathogen utilizes the T3SS to prevent phagocytosis and inhibit inflammatory responses.
View Article and Find Full Text PDFThe ability of most bacterial flagellar motors to reverse the direction of rotation is crucial for efficient chemotaxis. In Escherichia coli, motor reversals are mediated by binding of phosphorylated chemotaxis protein CheY to components of the flagellar rotor, FliM and FliN, which induces a conformational switch of the flagellar C-ring. Here, we show that for Shewanella putrefaciens, Vibrio parahaemolyticus and likely a number of other species an additional transmembrane protein, ZomB, is critically required for motor reversals as mutants lacking ZomB exclusively exhibit straightforward swimming also upon full phosphorylation or overproduction of CheY.
View Article and Find Full Text PDF