We present techniques for performing two-qubit gates on Gottesman-Kitaev-Preskill (GKP) codes with finite energy, and find that operations designed for ideal infinite-energy codes create undesired entanglement when applied to physically realistic states. We demonstrate that this can be mitigated using recently developed local error-correction protocols, and evaluate the resulting performance. We also propose energy-conserving finite-energy gate implementations which largely avoid the need for further correction.
View Article and Find Full Text PDFQuantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics. However, scalability to larger systems with many qubits is challenging. One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits that are reversibly interfaced to communication qubits.
View Article and Find Full Text PDFNondestructive quantum measurements are central for quantum physics applications ranging from quantum sensing to quantum computing and quantum communication. Employing the toolbox of cavity quantum electrodynamics, we here concatenate two identical nondestructive photon detectors to repeatedly detect and track a single photon propagating through a 60 m long optical fiber. By demonstrating that the combined signal-to-noise ratio of the two detectors surpasses each single one by about 2 orders of magnitude, we experimentally verify a key practical benefit of cascaded nondemolition detectors compared to conventional absorbing devices.
View Article and Find Full Text PDFQuantum teleportation enables the deterministic exchange of qubits via lossy channels. While it is commonly believed that unconditional teleportation requires a preshared entangled qubit pair, here we demonstrate a protocol that is in principle unconditional and requires only a single photon as an ex-ante prepared resource. The photon successively interacts, first, with the receiver and then with the sender qubit memory.
View Article and Find Full Text PDFThe big challenge in quantum computing is to realize scalable multi-qubit systems with cross-talk-free addressability and efficient coupling of arbitrarily selected qubits. Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster. Such a distributed architecture, however, requires the capability to execute quantum-logic gates between distant qubits.
View Article and Find Full Text PDFSingle photons with tailored temporal profiles are a vital resource for future quantum networks. Here we distill them out of custom-shaped laser pulses that reflect from a single atom strongly coupled to an optical resonator. A subsequent measurement on the atom is employed to herald a successful distillation.
View Article and Find Full Text PDFWe demonstrate entanglement generation of two neutral atoms trapped inside an optical cavity. Entanglement is created from initially separable two-atom states through carving with weak photon pulses reflected from the cavity. A polarization rotation of the photons heralds the entanglement.
View Article and Find Full Text PDFThat two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons.
View Article and Find Full Text PDF