Adaptation enables natural populations to survive in a changing environment. Understanding the mechanics of adaptation is therefore crucial for learning about the evolution and ecology of natural populations. We focus on the impact of random sweepstakes on selection in highly fecund haploid and diploid populations partitioned into two genetic types, with one type conferring selective advantage.
View Article and Find Full Text PDFThe field of population genomics has grown rapidly in response to the recent advent of affordable, large-scale sequencing technologies. As opposed to the situation during the majority of the 20th century, in which the development of theoretical and statistical population genetic insights outpaced the generation of data to which they could be applied, genomic data are now being produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) models to data, at the expense of a careful exploration of the range of possible underlying evolutionary processes.
View Article and Find Full Text PDFThe ability to accurately identify and quantify genetic signatures associated with soft selective sweeps based on patterns of nucleotide variation has remained controversial. We here provide counter viewpoints to recent publications in PLOS Genetics that have argued not only for the statistical identifiability of soft selective sweeps, but also for their pervasive evolutionary role in both Drosophila and HIV populations. We present evidence that these claims owe to a lack of consideration of competing evolutionary models, unjustified interpretations of empirical outliers, as well as to new definitions of the processes themselves.
View Article and Find Full Text PDFDetecting selective sweeps driven by strong positive selection and localizing the targets of selection in the genome play a major role in modern population genetics and genomics. Most of these analyses are based on the classical model of genetic hitchhiking proposed by Maynard Smith and Haigh (1974, , 23, 23). Here, we consider extensions of the classical two-locus model.
View Article and Find Full Text PDFLife (Basel)
August 2021
Evolutionary adaptation after sudden environmental changes can occur very rapidly. The mechanisms facilitating rapid adaptation range from strong positive directional selection leading to large shifts in the allele frequencies at a few loci (selective sweeps) to polygenic selection causing small changes in allele frequencies at many loci. In addition, combinations of these two extreme mechanisms may also result in fast evolution.
View Article and Find Full Text PDFEuropean and African natural populations of Drosophila melanogaster have been the focus of several studies aiming at inferring demographic and adaptive processes based on genetic variation data. However, in these analyses little attention has been given to gene flow between African and European samples. Here we present a dataset consisting of 14 fully sequenced haploid genomes sampled from a natural population from the northern species range (Umeå, Sweden).
View Article and Find Full Text PDFPolygenic adaptation in response to selection on quantitative traits has become an important topic in evolutionary biology. Here we review the recent literature on models of polygenic adaptation. In particular, we focus on a model that includes mutation and both directional and stabilizing selection on a highly polygenic trait in a population of finite size (thus experiencing random genetic drift).
View Article and Find Full Text PDFWe analyzed a model to determine the factors that facilitate or limit rapid polygenic adaptation. This model includes population genetic terms of mutation and both directional and stabilizing selection on a highly polygenic trait in a diploid population of finite size. First, we derived the equilibrium distribution of the allele frequencies of the multilocus model by diffusion approximation.
View Article and Find Full Text PDFBackground: Coevolution is a selective process of reciprocal adaptation in hosts and parasites or in mutualistic symbionts. Classic population genetics theory predicts the signatures of selection at the interacting loci of both species, but not the neutral genome-wide polymorphism patterns. To bridge this gap, we build an eco-evolutionary model, where neutral genomic changes over time are driven by a single selected locus in hosts and parasites via a simple biallelic gene-for-gene or matching-allele interaction.
View Article and Find Full Text PDFWild tomato species, like , are important germplasm resources for enhanced biotic and abiotic stress resistance in tomato breeding. also serves as a model to study adaptation of plants to drought and the evolution of seed banks. The absence of a well-annotated reference genome in this compulsory outcrossing, very diverse species limits in-depth studies on the genes involved.
View Article and Find Full Text PDFGenome analyses have revealed a profound role of hybridization and introgression in the evolution of many eukaryote lineages, including fungi. The impact of recurrent introgression on fungal evolution however remains elusive. Here, we analyzed signatures of introgression along the genome of the fungal wheat pathogen Zymoseptoria tritici.
View Article and Find Full Text PDFThis article presents a comprehensive review of the Y PET/CT challenges in imaging post liver radioembolization. Specificities of the different PET systems are identified. Conclusions are drawn to help the design of phantom validation studies, quantification of intrahepatic activity, assessment of tumor dosimetry, and checking of extrahepatic sphere delivery in clinical routine.
View Article and Find Full Text PDFrecently spread from its tropical origin in Africa and became a cosmopolitan species that has adapted to a wide range of different thermal environments, including temperate climates. An important limiting factor of temperate climates has probably been their low and varying temperatures. The transcriptional output of genes can vary across temperatures, which might have been detrimental while settling in temperate environments.
View Article and Find Full Text PDFFor almost 20 years, many inference methods have been developed to detect selective sweeps and localize the targets of directional selection in the genome. These methods are based on population genetic models that describe the effect of a beneficial allele (, a new mutation) on linked neutral variation (driven by directional selection from a single copy to fixation). Here, I discuss these models, ranging from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and emphasize the important role of demography and population structure in data analysis.
View Article and Find Full Text PDFA recent article reassessing the Neutral Theory of Molecular Evolution claims that it is no longer as important as is widely believed. The authors argue that "the neutral theory was supported by unreliable theoretical and empirical evidence from the beginning, and that in light of modern, genome-scale data, we can firmly reject its universality." Claiming that "the neutral theory has been overwhelmingly rejected," they propose instead that natural selection is the major force shaping both between-species divergence and within-species variation.
View Article and Find Full Text PDFEnvironmental conditions are strong selective forces, which may influence adaptation and speciation. The wild tomato species , native to South America, is exposed to a range of abiotic stress factors. To identify signatures of natural selection and local adaptation, we analysed 16 genes involved in the abiotic stress response and compared the results to a set of reference genes in 23 populations across the entire species range.
View Article and Find Full Text PDFWe consider a model of viability selection in a highly fecund haploid population with sweepstakes reproduction. We use simulations to estimate the time until the allelic type with highest fitness has reached high frequency in a finite population. We compare the time between two reproduction modes of high and low fecundity.
View Article and Find Full Text PDFMany experimental and field studies have shown that adaptation can occur very rapidly. Two qualitatively different modes of fast adaptation have been proposed: selective sweeps wherein large shifts in the allele frequencies occur at a few loci and evolution via small changes in the allele frequencies at many loci. Although the first process has been thoroughly investigated within the framework of population genetics, the latter is based on quantitative genetics and is much less understood.
View Article and Find Full Text PDFObjective: The aim of this analysis was to contrast trends in exposure-report calls and informational queries (a measure of public interest) about mercury to the Florida Poison Control Centers over 2003-2013.
Materials And Methods: Poison-control specialists coded calls to Florida Poison Control Centers by substance of concern, caller demographics, and whether the call pertained to an exposure event or was an informational query. For the present study, call records regarding mercury were de-identified and provided along with daily total number of calls for statistical analysis.
Although a number of studies have shown that natural and laboratory populations initially well adapted to their environment can evolve rapidly when conditions suddenly change, the dynamics of rapid adaptation are not well understood. Here a population genetic model of polygenic selection is analyzed to describe the short-term response of a quantitative trait after a sudden shift of the phenotypic optimum. We provide explicit analytical expressions for the timescales over which the trait mean approaches the new optimum.
View Article and Find Full Text PDFCiguatera Fish Poisoning (CFP) is the most frequently reported seafood-toxin illness in the world. It causes substantial human health, social, and economic impacts. The illness produces a complex array of gastrointestinal, neurological and neuropsychological, and cardiovascular symptoms, which may last days, weeks, or months.
View Article and Find Full Text PDFBackground: In the history of population genetics balancing selection has been considered as an important evolutionary force, yet until today little is known about its abundance and its effect on patterns of genetic diversity. Several well-known examples of balancing selection have been reported from humans, mice, plants, and parasites. However, only very few systematic studies have been carried out to detect genes under balancing selection.
View Article and Find Full Text PDFBackground: Transcriptome analysis may provide means to investigate the underlying genetic causes of shared and divergent phenotypes in different populations and help to identify potential targets of adaptive evolution. Applying RNA sequencing to whole male Drosophila melanogaster from the ancestral tropical African environment and a very recently colonized cold-temperate European environment at both standard laboratory conditions and following a cold shock, we seek to uncover the transcriptional basis of cold adaptation.
Results: In both the ancestral and the derived populations, the predominant characteristic of the cold shock response is the swift and massive upregulation of heat shock proteins and other chaperones.
Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection.
View Article and Find Full Text PDF