Research (Wash D C)
December 2024
Metamaterials hold great potential to enhance the imaging performance of magnetic resonance imaging (MRI) as auxiliary devices, due to their unique ability to confine and enhance electromagnetic fields. Despite their promise, the current implementation of metamaterials faces obstacles for practical clinical adoption due to several notable limitations, including their bulky and rigid structures, deviations from optimal resonance frequency, and inevitable interference with the radiofrequency (RF) transmission field in MRI. Herein, we address these restrictions by introducing a flexible and smart metamaterial that enhances sensitivity by conforming to patient anatomies while ensuring comfort during MRI procedures.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) relies on high-performance receive coils to achieve optimal signal-to-noise ratio (SNR), but conventional designs are often bulky and complex. Recent advancements in metamaterial technology have led to the development of metamaterial-inspired receive coils that enhance imaging capabilities and offer design flexibility. However, these configurations typically face challenges related to reduced adaptability and increased physical footprint.
View Article and Find Full Text PDFPurpose: Damage Control Surgery (DCS) refers to a staged laparotomy performed in patients who have suffered severe blunt or penetrating abdominopelvic trauma with the goal of managing critical injuries while avoiding life threatening metabolic derangements. Within 24 h of the initial laparotomy, computed tomography (CT) is used to assess the full extent of injuries. The purpose of this study was to assess the incidence of clinically significant unknown abdominopelvic injuries which required further dedicated surgical or interventional radiology management and failed surgical repairs identified on CT following initial laparotomy.
View Article and Find Full Text PDFA body area network involving wearable sensors distributed around the human body can continuously monitor physiological signals, finding applications in personal healthcare and athletic evaluation. Existing solutions for near-field body area networks, while facilitating reliable and secure interconnection among battery-free sensors, face challenges including limited spectral stability against external interference. Here we demonstrate a textile metamaterial featuring a coaxially-shielded internal structure designed to mitigate interference from extraneous loadings.
View Article and Find Full Text PDFAnatomy-specific radio frequency receive coil arrays routinely adopted in magnetic resonance imaging (MRI) for signal acquisition are commonly burdened by their bulky, fixed, and rigid configurations, which may impose patient discomfort, bothersome positioning, and suboptimal sensitivity in certain situations. Herein, leveraging coaxial cables' inherent flexibility and electric field confining property, we present wireless, ultralightweight, coaxially shielded, passive detuning MRI coils achieving a signal-to-noise ratio comparable to or surpassing that of commercially available cutting-edge receive coil arrays with the potential for improved patient comfort, ease of implementation, and substantially reduced costs. The proposed coils demonstrate versatility by functioning both independently in form-fitting configurations, closely adapting to relatively small anatomical sites, and collectively by inductively coupling together as metamaterials, allowing for extension of the field of view of their coverage to encompass larger anatomical regions without compromising coil sensitivity.
View Article and Find Full Text PDFMetamaterials hold significant promise for enhancing the imaging capabilities of magnetic resonance imaging (MRI) machines as an additive technology, due to their unique ability to enhance local magnetic fields. However, despite their potential, the metamaterials reported in the context of MRI applications have often been impractical. This impracticality arises from their predominantly flat configurations and their susceptibility to shifts in resonance frequencies, preventing them from realizing their optimal performance.
View Article and Find Full Text PDFRecent advancements in metamaterials have yielded the possibility of a wireless solution to improve signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI). Unlike traditional closely packed local coil arrays with rigid designs and numerous components, these lightweight, cost-effective metamaterials eliminate the need for radio frequency cabling, baluns, adapters, and interfaces. However, their clinical adoption is limited by their low sensitivity, bulky physical footprint, and limited, specific use cases.
View Article and Find Full Text PDFMetamaterials hold significant promise for enhancing the imaging capabilities of MRI machines as an additive technology, due to their unique ability to enhance local magnetic fields. However, despite their potential, the metamaterials reported in the context of MRI applications have often been impractical. This impracticality arises from their predominantly flat configurations and their susceptibility to shifts in resonance frequencies, preventing them from realizing their optimal performance.
View Article and Find Full Text PDFPurpose: The purpose of this study is to utilize a two-material decomposition to quantify bone marrow edema on a dual-energy computed tomography (DECT) scanner at the cervical, thoracic, and lumbar spine acute fractures in correlation with short tau inversion recovery (STIR) hyperintensity on magnetic resonance imaging (MRI) in comparison with the normal bone marrow.
Materials And Methods: This retrospective institutional review board-approved study gathered patients over 18 years old who had acute cervical, thoracic, or lumbar spinal fractures scanned on a DECT scanner. Those who had a spinal MRI done with bone marrow STIR hyperintensity within 3 weeks of the DECT were included.
Background: Hematocrit and lactate have an established role in trauma as indicators of bleeding and cell death, respectively. The wide availability of CT imaging and clinical data poses the question of how these can be used in combination to predict outcomes.
Purpose: To assess the utility of hematocrit or lactate trends in predicting intensive care unit (ICU) admission and hospital length of stay (LOS) in patients with torso trauma combined with clinical parameters and injury findings on CT.
A central goal of modern magnetic resonance imaging (MRI) is to reduce the time required to produce high-quality images. Efforts have included hardware and software innovations such as parallel imaging, compressed sensing, and deep learning-based reconstruction. Here, we propose and demonstrate a Bayesian method to build statistical libraries of magnetic resonance (MR) images in k-space and use these libraries to identify optimal subsampling paths and reconstruction processes.
View Article and Find Full Text PDFBackground: Two-material decomposition is insufficient to quantify the fat fraction of spinal bone marrow, which is comprised of a mixture of bone minerals, water, and yellow marrow (fat).
Purpose: To develop an accurate three-material decomposition-based bone marrow fat fraction ( ) quantification technique for dual-energy CT.
Methods: Bone marrow edema phantoms containing trabecular bone minerals, water, and fat were constructed using fat fractions and bone mineral density values matching those expected in healthy and edematous bone, and scanned on a commercial dual-energy CT.
Background T1-weighted MRI and quantitative longitudinal relaxation rate (R1) mapping have been used to evaluate gadolinium retention in the brain after gadolinium-based contrast agent (GBCA) administration. Whether MRI measures accurately reflect gadolinium regional distribution and concentration in the brain remains unclear. Purpose To compare gadolinium retention in rat forebrain measured with in vivo quantitative MRI R1 and ex vivo laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) mapping after gadobenate, gadopentetate, gadodiamide, or gadobutrol administration.
View Article and Find Full Text PDFPurpose: The purpose of our study was to analyze the change in water and fat density within the bone marrow using the GE Revolution dual-energy computed tomography (DECT) platform using two-material decomposition analyses at extremity, spine, and pelvic fracture sites compared to normal bone marrow at equivalent anatomic sites in adult patients who sustained blunt trauma.
Methods: This retrospective study included 26 consecutive adults who sustained blunt torso trauma and an acute fracture of the thoracolumbar vertebral body, pelvis, or upper and lower extremities with a total of 32 fractures evaluated. Two-material decomposition images were analyzed for quantitative analysis.
Radiofrequency identification (RFID), particularly passive RFID, is extensively employed in industrial applications to track and trace products, assets, and material flows. The ongoing trend toward increasingly miniaturized RFID sensor tags is likely to continue as technology advances, although miniaturization presents a challenge with regard to the communication coverage area. Recently, efforts in applying metamaterials in RFID technology to increase power transfer efficiency through their unique capacity for electromagnetic wave manipulation have been reported.
View Article and Find Full Text PDFAuxetics refers to structures or materials with a negative Poisson's ratio, thereby capable of exhibiting counterintuitive behaviors. Herein, auxetic structures are exploited to design mechanically tunable metamaterials in both planar and hemispherical configurations operating at megahertz (MHz) frequencies, optimized for their application to magnetic resonance imaging (MRI). Specially, the reported tunable metamaterials are composed of arrays of interjointed unit cells featuring metallic helices, enabling auxetic patterns with a negative Poisson's ratio.
View Article and Find Full Text PDFConventional two-material dual-energy CT (DECT) decomposition is insufficient to model bone marrow, which contains three materials: bone minerals, red marrow (water), and yellow marrow (fat). We explore an image-domain three-material decomposition DECT technique accounting for bone minerals in a bone-water-fat phantom. Three-material decomposition fat fraction (FF) exhibited stronger correlation than two-material decomposition fat fraction (FF) with MRI-based fat fraction ( = 0.
View Article and Find Full Text PDFPurpose: To compare conventional and dual-energy CT (DECT) for the diagnosis of acute cholecystitis and gangrene.
Methods: Fifty-seven consecutive adult patients with abdominal pain who underwent IV contrast-enhanced abdominal DECT on a dual-layer (dlDECT) or rapid-switching (rsDECT) scanner from September, 2018 to April, 2021 with cholecystectomy and pathology-confirmed cholecystitis were retrospectively reviewed, and compared with 57 consecutive adult patients without cholecystitis from the same interval scanned with DECT. Images were reviewed independently by two abdominal radiologists with 12 and 16 years of experience in two sessions 4 weeks apart, blinded to clinical data.
Objective: To develop machine learning (ML) models capable of predicting ICU admission and extended length of stay (LOS) after torso (chest, abdomen, or pelvis) trauma, by using clinical and/or imaging data.
Materials And Methods: This was a retrospective study of 840 adult patients admitted to a level 1 trauma center after injury to the torso over the course of 1 year. Clinical parameters included age, sex, vital signs, clinical scores, and laboratory values.
Objectives: To evaluate hepatic vascular injury (HVI) on CT in blunt and penetrating trauma and assess its relationship to patient management and outcome.
Method And Materials: This retrospective study was IRB approved and HIPAA compliant. Informed consent was waived.
Detecting low energy photons, such as photons in the long-wave infrared range, is a technically challenging proposition using naturally occurring materials. In order to address this challenge, we herein demonstrate a micro-bolometer featuring an integrated metamaterial absorber (MA), which takes advantage of the resonant absorption and frequency selective properties of the MA. Importantly, our micro-bolometer exhibits polarization insensitivity and high absorption due to a novel metal-insulator-metal (MIM) absorber design, operating at 8-12 µm wavelength.
View Article and Find Full Text PDFBreaking Lorentz reciprocity is fundamental to an array of functional radiofrequency (RF) and optical devices, such as isolators and circulators. The application of external excitation, such as magnetic fields and spatial-temporal modulation, has been employed to achieve nonreciprocal responses. Alternatively, nonlinear effects may also be employed to break reciprocity in a completely passive fashion.
View Article and Find Full Text PDFThe purpose of this study was to determine the quantification accuracy of virtual unenhanced images and establish the lower limit of iodine quantification as a function of dose. A large elliptical and cylindric phantom mimicking the patient abdomen was scanned on two commercial dual-energy CT scanners, an IQon Spectral CT (Philips Healthcare) and a Revolution CT with Gemstone Spectral Imaging Xtream suite (GE Healthcare). The phantom contained simulated soft tissue, blood, and bone with known elemental composition.
View Article and Find Full Text PDFBackground Gadolinium retention after repeated gadolinium-based contrast agent (GBCA) exposure has been reported in subcortical gray matter. However, gadolinium retention in the cerebral cortex has not been systematically investigated. Purpose To determine whether and where gadolinium is retained in rat and human cerebral cortex.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) represents a mainstay among the diagnostic imaging tools in modern healthcare. Signal-to-noise ratio (SNR) represents a fundamental performance metric of MRI, the improvement of which may be translated into increased image resolution or decreased scan time. Recently, efforts towards the application of metamaterials in MRI have reported improvements in SNR through their capacity to interact with electromagnetic radiation.
View Article and Find Full Text PDF