Publications by authors named "Stephan Pabinger"

Background: The WHO recommends mandatory serological testing of blood donors for hepatitis B virus, hepatitis C virus (HCV), human immunodeficiency virus (HIV), and syphilis. We evaluated the performance of Elecsys® infectious disease immunoassays against commercially available comparator assays.

Methods: Prospective, routine, anonymized patient or donor samples (n = 8,821) were analyzed at three German sites using Elecsys antihepatitis B core antigen (Anti-HBc II), Anti-HCV II, HIV combi PT, hepatitis B surface antigen (HBsAg II), and Syphilis immunoassays (cobas e 411 analyzer) versus ARCHITECT comparator assays.

View Article and Find Full Text PDF

Animal mitochondrial genomic polymorphism occurs as low-level mitochondrial heteroplasmy and deeply divergent co-existing molecules. The latter is rare, known only in bivalvian mollusks. Here we show two deeply divergent co-existing mt-genomes in a vertebrate through genomic sequencing of the Tuatara (Sphenodon punctatus), the sole-representative of an ancient reptilian Order.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the leading types of fatal cancer worldwide. Epigenetic manipulation of cancer cells is a useful tool to better understand gene expression regulatory mechanisms and contributes to the discovery of novel biomarkers. Our research group recently reported a list of 83 genes that are potentially modulated by DNA methylation in GC cell lines.

View Article and Find Full Text PDF

Background: Bacillus Calmette-Guérin (BCG) immunotherapy, the standard adjuvant intravesical therapy for some intermediate and most high-risk non-muscle invasive bladder cancers (NMIBCs), suffers from a heterogenous response rate. Molecular markers to help guide responses are scarce and currently not used in the clinical setting.

Methods: To identify novel biomarkers and pathways involved in response to BCG immunotherapy, we performed a genome-wide DNA methylation analysis of NMIBCs before BCG therapy.

View Article and Find Full Text PDF

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana-is an iconic species that is endemic to New Zealand. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled.

View Article and Find Full Text PDF

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Very few therapeutic options are currently available in this neoplasia. The use of 5-Aza-2'-deoxycytidine (5-AZAdC) was approved for the treatment of myelodysplastic syndromes, and this drug can treat solid tumours at low doses.

View Article and Find Full Text PDF

Background: Jatropha curcas, a tropical shrub, is a promising biofuel crop, which produces seeds with high content of oil and protein. To better understand the maturation process of J. curcas seeds and to improve its agronomic performance, a two-step approach was performed in six different maturation stages of seeds: 1) generation of the entire transcriptome of J.

View Article and Find Full Text PDF

The development of multiplex polymerase chain reaction and microarray assays is challenging due to primer dimer formation, unspecific hybridization events, the generation of unspecific by-products, primer depletion, and thus lower amplification efficiencies. We have developed a software workflow with three underlying algorithms that differ in their use case and specificity, allowing the complete in silico evaluation of such assays on user-derived data sets. We experimentally evaluated the method for the prediction of oligonucleotide hybridization events including resulting products and probes, self-dimers, cross-dimers and hairpins at different experimental conditions.

View Article and Find Full Text PDF

Microphysiological systems play a pivotal role in progressing toward a global paradigm shift in drug development. Here, we designed a four-organ-chip interconnecting miniaturized human intestine, liver, brain and kidney equivalents. All four organ models were predifferentiated from induced pluripotent stem cells from the same healthy donor and integrated into the microphysiological system.

View Article and Find Full Text PDF

DNA methylation is one of the major epigenetic modifications and has frequently demonstrated its suitability as diagnostic and prognostic biomarker. In addition to chip and sequencing based epigenome wide methylation profiling methods, targeted bisulfite sequencing (TBS) has been established as a cost-effective approach for routine diagnostics and target validation applications. Yet, an easy-to-use tool for the analysis of TBS data in combination with array-based methylation results has been missing.

View Article and Find Full Text PDF

Mutagenesis in combination with Genotyping by Sequencing (GBS) is a powerful tool for introducing variation, studying gene function and identifying causal mutations underlying phenotypes of interest in crop plant genomes. About 400 million paired-end reads were obtained from 82 ethylmethane sulfonate (EMS) induced mutants and 14 wild-type accessions of for the detection of Single Nucleotide Polymorphisms (SNPs) and Insertion/Deletions (InDels) by two different approaches (nGBS and ddGBS) on an Illumina HiSeq 2000 sequencer. Using bioinformatics analyses, 1,452 induced SNPs and InDels were identified in coding regions, which were distributed across 995 genes.

View Article and Find Full Text PDF

The success of widely used oligonucleotide-based experiments, ranging from PCR to microarray, strongly depends on an accurate design. The design process involves a number of steps, which use specific parameters to produce high quality oligonucleotides. Oli2go is an efficient, user friendly, fully automated multiplex oligonucleotide design tool, which performs primer and different hybridization probe designs as well as specificity and cross dimer checks in a single run.

View Article and Find Full Text PDF

Background: To avoid false negative results, hepatitis B surface antigen (HBsAg) assays need to detect samples with mutations in the immunodominant 'a' determinant region, which vary by ethnographic region.

Objective: We evaluated the prevalence and type of HBsAg mutations in a hepatitis B virus (HBV)-infected East- and Southeast Asian population, and the diagnostic performance of the Elecsys HBsAg II Qualitative assay.

Study Design: We analyzed 898 samples from patients with HBV infection from four sites (China [Beijing and Guangzhou], Korea and Vietnam).

View Article and Find Full Text PDF

Background: It is essential that hepatitis B surface antigen (HBsAg) diagnostic assays reliably detect genetic diversity in the major hydrophilic region (MHR) of HBsAg to avoid false-negative results. Mutations in this domain display marked ethno-geographic variation and may lead to failure to diagnose hepatitis B virus (HBV) infection.

Objectives: Evaluate diagnostic performance of the Elecsys HBsAg II Qualitative assay in a cohort of South African HBV-positive blood donors.

View Article and Find Full Text PDF

The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases.

View Article and Find Full Text PDF

Background: Bisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity.

View Article and Find Full Text PDF

Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM). Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers.

View Article and Find Full Text PDF

Background: Methylation-sensitive restriction enzymes-polymerase chain reaction (MSRE-PCR) has been used in epigenetic research to identify genome-wide and gene-specific DNA methylation. Currently, epigenome-wide discovery studies provide many candidate regions for which the MSREqPCR approach can be very effective to confirm the findings. MSREqPCR provides high multiplexing capabilities also when starting with limited amount of DNA-like cfDNA to validate many targets in a time- and cost-effective manner.

View Article and Find Full Text PDF

Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available.

View Article and Find Full Text PDF

Background: Traditional Sanger sequencing has been used as a gold standard method for genetic testing in clinic to perform single gene test, which has been a cumbersome and expensive method to test several genes in heterogeneous disease such as cancer. With the advent of Next Generation Sequencing technologies, which produce data on unprecedented speed in a cost effective manner have overcome the limitation of Sanger sequencing. Therefore, for the efficient and affordable genetic testing, Next Generation Sequencing has been used as a complementary method with Sanger sequencing for disease causing mutation identification and confirmation in clinical research.

View Article and Find Full Text PDF

Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.

View Article and Find Full Text PDF

Increasing economic interest in Jatropha curcas requires a major research focus on the genetic background and geographic origin of this non-edible biofuel crop. To determine the worldwide genetic structure of this species, amplified fragment length polymorphisms, inter simple sequence repeats, and novel single nucleotide polymorphisms (SNPs) were employed for a large collection of 907 J. curcas accessions and related species (RS) from three continents, 15 countries and 53 regions.

View Article and Find Full Text PDF