Publications by authors named "Stephan P Swinnen"

Theta burst stimulation (TBS) can modulate cortical excitability but suffers from high inter-subject variability. Modified TBS frequency patterns (30 Hz) showed consistent inhibitory aftereffects, but further research into the time course of these effects is needed. This study aimed to investigate the efficacy of a 30 Hz continuous TBS (cTBS) protocol.

View Article and Find Full Text PDF

Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation).

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the human brain, has long been considered essential in human behavior in general and learning in particular. GABA concentration can be quantified using magnetic resonance spectroscopy (MRS). Using this technique, numerous studies have reported associations between baseline GABA levels and various human behaviors.

View Article and Find Full Text PDF

Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobule (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy, during a cognitive flexibility task and its relationship with the performance level and the local task-induced blood oxygenation level-dependent (BOLD) response in 40 young (18-35 years; 26 female) and 40 older (18-35 years; 21 female) human adults.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) may facilitate neuroplasticity but with a limited effect when administered while patients with stroke are at rest. Muscle-computer interface (MCI) training is a promising approach for training patients with stroke even if they cannot produce overt movements. However, using tDCS to enhance MCI training has not been investigated.

View Article and Find Full Text PDF

We aimed to investigate transfer of learning, whereby previously acquired skills impact new task learning. While it has been debated whether such transfer may yield positive, negative, or no effects on performance, very little is known about the underlying neural mechanisms, especially concerning the role of inhibitory (GABA) and excitatory (Glu) (measured as Glu + glutamine (Glx)) neurometabolites, as measured by magnetic resonance spectroscopy (MRS). Participants practiced a bimanual coordination task across four days.

View Article and Find Full Text PDF

Objective: Using dual-site transcranial magnetic stimulation (dsTMS), the effective connectivity between the primary motor cortex (M1) and adjacent brain areas such as the dorsal premotor cortex (PMd) can be investigated. However, stimulating two brain regions in close proximity (e.g.

View Article and Find Full Text PDF

Synaptic plasticity relies on the balance between excitation and inhibition in the brain. As the primary inhibitory and excitatory neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu), play critical roles in synaptic plasticity and learning. However, the role of these neurometabolites in motor learning is still unclear.

View Article and Find Full Text PDF

Targeted memory reactivation (TMR) during sleep enhances memory consolidation in young adults by modulating electrophysiological markers of neuroplasticity. Interestingly, older adults exhibit deficits in motor memory consolidation, an impairment that has been linked to age-related degradations in the same sleep features sensitive to TMR. We hypothesised that TMR would enhance consolidation in older adults via the modulation of these markers.

View Article and Find Full Text PDF

Functional connectivity (FC) during sleep has been shown to break down as non-rapid eye movement (NREM) sleep deepens before returning to a state closer to wakefulness during rapid eye movement (REM) sleep. However, the specific spatial and temporal signatures of these fluctuations in connectivity patterns remain poorly understood. This study aimed to investigate how frequency-dependent network-level FC fluctuates during nocturnal sleep in healthy young adults using high-density electroencephalography (hdEEG).

View Article and Find Full Text PDF
Article Synopsis
  • * The study used magnetic resonance spectroscopy (MRS) and diffusion MRI (dMRI) to measure chemical concentrations and fiber density in the brain's sensorimotor and occipital areas.
  • * Findings indicated that older adults had slower reaction times, with decreased N-acetyl aspartate (NAA) and fiber density (FD) in the sensorimotor region, suggesting that lower NAA may contribute to slower motor responses.
View Article and Find Full Text PDF

Introduction: Neurological soft signs (NSS) are minor deviations from the norm in motor performance that are commonly assessed using neurological examinations. NSS may be of clinical relevance for evaluating the developmental status of adolescents. Here we investigate whether quantitative force plate measures may add relevant information to observer-based neurological examinations.

View Article and Find Full Text PDF

Beyond the characteristics of a brain lesion, such as its etiology, size or location, lesion network mapping (LNM) has shown that similar symptoms after a lesion reflects similar dis-connectivity patterns, thereby linking symptoms to brain networks. Here, we extend LNM by using a multimodal strategy, combining functional and structural networks from 1000 healthy participants in the Human Connectome Project. We apply multimodal LNM to a cohort of 54 stroke patients with the aim of predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests.

View Article and Find Full Text PDF

Aging is associated with alterations in the brain including structural and metabolic changes. Previous research has focused on neurometabolite level differences associated to age in a variety of brain regions, but the relationship among metabolites across the brain has been much less studied. Investigating these relationships can reveal underlying neurometabolic processes, their interdependency, and their progress throughout the lifespan.

View Article and Find Full Text PDF

Neurological soft signs (NSS) are minor deviations in motor performance. During childhood and adolescence, NSS are examined for functional motor phenotyping to describe development, to screen for comorbidities, and to identify developmental vulnerabilities. Here, we investigate underlying brain structure alterations in association with NSS in physically trained adolescents.

View Article and Find Full Text PDF

This study aimed to investigate the presence and patterns of age-related differences in TMS-based measures of lateralization and distinctiveness of the cortical motor representations of two different hand muscles. In a sample of seventy-three right-handed healthy participants over the adult lifespan, the first dorsal interosseus (FDI) and abductor digiti minimi (ADM) cortical motor representations of both hemispheres were acquired using transcranial magnetic stimulation (TMS). In addition, dexterity and maximum force levels were measured.

View Article and Find Full Text PDF

Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed.

View Article and Find Full Text PDF

The human brain generates a rich repertoire of spatio-temporal activity patterns, which support a wide variety of motor and cognitive functions. These patterns of activity change with age in a multi-factorial manner. One of these factors is the variations in the brain's connectomics that occurs along the lifespan.

View Article and Find Full Text PDF

Aging may be associated with motor decline that is attributed to deteriorating white matter microstructure of the corpus callosum (CC), among other brain-related factors. Similar to motor functioning, executive functioning (EF) typically declines during aging, with age-associated changes in EF likewise being linked to altered white matter connectivity in the CC. Given that both motor and executive functions rely on white matter connectivity via the CC, and that bimanual control is thought to rely on EF, the question arises whether EF can at least party account for the proposed link between CC-connectivity and motor control in older adults.

View Article and Find Full Text PDF

To investigate whether beta oscillations are related to motor inhibition, thirty-six participants underwent two concurrent transcranial alternating current stimulation (tACS) and electroencephalography (EEG) sessions during which either beta (20 Hz) or gamma (70 Hz) stimulation was applied while participants performed a stop-signal task. In addition, we acquired magnetic resonance images to simulate the electric field during tACS. 20 Hz stimulation targeted at the pre-supplementary motor area enhanced inhibition and increased beta oscillatory power around the time of the stop-signal in trials directly following stimulation.

View Article and Find Full Text PDF

The flexible adjustment of ongoing behavior challenges the nervous system's dynamic control mechanisms and has shown to be specifically susceptible to age-related decline. Previous work links endogenous gamma-aminobutyric acid (GABA) with behavioral efficiency across perceptual and cognitive domains, with potentially the strongest impact on those behaviors that require a high level of dynamic control. Our analysis integrated behavior and modulation of interhemispheric phase-based connectivity during dynamic motor-state transitions with endogenous GABA concentration in adult human volunteers.

View Article and Find Full Text PDF

Reaching for an object in space forms the basis for many activities of daily living and is important in rehabilitation after stroke and in other neurological and orthopedic conditions. It has been the object of motor control and neuroscience research for over a century, but studies often constrain movement to eliminate the effect of gravity or reduce the degrees of freedom. In some studies, aging has been shown to reduce target accuracy, with a mechanism suggested to be impaired corrective movements.

View Article and Find Full Text PDF

Aging affects the brain at the anatomical and functional levels, resulting in a decline in motor and cognitive performance. Functional magnetic resonance imaging (fMRI) studies documented lower connectivity within brain networks and higher connectivity between them, for older as compared with young adults. However, it is still unclear whether the reduced segregation between networks, as observed with fMRI, has neurophysiological underpinnings.

View Article and Find Full Text PDF

Understanding the neurophysiological mechanisms that drive human behavior has been a long-standing focus of cognitive neuroscience. One well-known neuro-metabolite involved in the creation of optimal behavioral repertoires is GABA, the main inhibitory neurochemical in the human brain. Converging evidence from both animal and human studies indicates that individual variations in GABAergic function are associated with behavioral performance.

View Article and Find Full Text PDF

Recent studies suggest an important role of the principal inhibitory neurotransmitter GABA for motor performance in the context of aging. Nonetheless, as previous magnetic resonance spectroscopy (MRS) studies primarily reported resting-state GABA levels, much less is known about transient changes in GABA levels during motor task performance and how these relate to behavior and brain activity patterns. Therefore, we investigated GABA+ levels of left primary sensorimotor cortex (SM1) acquired before, during, and after execution of a unimanual/bimanual action selection task in 30 (human) young adults (YA; age 24.

View Article and Find Full Text PDF