We report the results of fabricating fiber array unit (FAU) connectors using a near IR laser welding process, locking fibers in proper position on planar glass substrates and forming strong glass-to-glass bonds, followed by final assembly using lower coefficient of thermal expansion (CTE) epoxies. A thin metal film deposited on the glass substrate provides the absorption required to attain interfacial temperatures suitable for glass-to-glass bonding. This method allows the elimination of dedicated expensive V-groove plates while still maintaining very good fiber placement accuracy.
View Article and Find Full Text PDFBackground And Objectives: Hospital-acquired infections (HAIs) and multidrug resistant bacteria pose a significant threat to the U.S. healthcare system.
View Article and Find Full Text PDFWe describe a novel process of laser-assisted fabrication of surface structures on doped oxide glasses with heights reaching 10 - 13% of the glass thickness. This effect manifests itself as a swelling of the irradiated portion of the glass, which occurs in a wide range of glass compositions. The extent of such swelling depends on the glass base composition.
View Article and Find Full Text PDFWe describe the performance of a fiber-optic power-limiting component. The passive device is dynamically responsive to the input signal and has been shown to attenuate continuous-wave power with a dynamic range of up to 9 dB at 150 mW of input power at 1550 nm. The limiting threshold is approximately 30 mW from 1530 to 1565 nm and less than 10 mW at 1430 nm.
View Article and Find Full Text PDF