Publications by authors named "Stephan Kratzer"

Background: Cortical high-frequency activation immediately before death has been reported, raising questions about an enhanced conscious state at this critical time. Here, we analyzed an electroencephalogram (EEG) from a comatose patient during the dying process with a standard bedside monitor and spectral parameterization techniques.

Methods: We report neurophysiologic features of a dying patient without major cortical injury.

View Article and Find Full Text PDF

Background: Aperiodic (nonoscillatory) electroencephalogram (EEG) activity can be characterised by its power spectral density, which decays according to an inverse power law. Previous studies reported a shift in the spectral exponent α from consciousness to unconsciousness. We investigated the impact of aperiodic EEG activity on parameters used for anaesthesia monitoring to test the hypothesis that aperiodic EEG activity carries information about the hypnotic component of general anaesthesia.

View Article and Find Full Text PDF

Background: Patient age is assumed to be an important risk factor for the occurrence of burst suppression, yet this has still to be confirmed by large datasets.

Methods: In this single-center retrospective analysis at a university hospital, the electronic patient records of 38,628 patients (≥18 years) receiving general anesthesia between January 2016 and December 2018 were analyzed. Risk factors for burst suppression were evaluated using univariate and multivariable analysis.

View Article and Find Full Text PDF

Background: The electroencephalographic (EEG) provides the anesthesiologist with information regarding the level of anesthesia. Processed EEG indices are available that reflect the level of anesthesia as a single number. Strong oscillatory EEG activity in the alpha-band may be associated with an adequate level of anesthesia and a lower incidence of cognitive sequelae.

View Article and Find Full Text PDF

The growing use of neuromonitoring in general anesthesia provides detailed insights into the effects of anesthetics on the brain. Our study focuses on the processed EEG indices State Entropy (SE), Response Entropy (RE), and Burst Suppression Ratio (BSR) of the GE Entropy Module, which serve as surrogate measures for estimating the level of anesthesia. While retrospectively analyzing SE and RE index values from patient records, we encountered a technical anomaly with a conspicuous distribution of index values.

View Article and Find Full Text PDF

Elderly and multimorbid patients are at high risk for developing unfavorable postoperative neurocognitive outcomes; however, well-adjusted and EEG-guided anesthesia may help titrate anesthesia and improve postoperative outcomes. Over the last decade, dexmedetomidine has been increasingly used as an adjunct in the perioperative setting. Its synergistic effect with propofol decreases the dose of propofol needed to induce and maintain general anesthesia.

View Article and Find Full Text PDF

Background: Intraoperative alpha-band power in frontal electrodes may provide helpful information about the balance of hypnosis and analgesia and has been associated with reduced occurrence of delirium in the postanesthesia care unit. Recent studies suggest that narrow-band power computations from neural power spectra can benefit from separating periodic and aperiodic components of the electroencephalogram. This study investigates whether such techniques are more useful in separating patients with and without delirium in the postanesthesia care unit at the group level as opposed to conventional power spectra.

View Article and Find Full Text PDF

Background: Monitoring the electroencephalogram (EEG) during general anesthesia can help to safely navigate the patient through the procedure by avoiding too deep or light anesthetic levels. In daily clinical practice, the EEG is recorded from the forehead and available neuromonitoring systems translate the EEG information into an index inversely correlating with the anesthetic level. Electrode placement on the forehead can lead to an influence of electromyographic (EMG) activity on the recorded signal in patients without neuromuscular blockade (NMB).

View Article and Find Full Text PDF

Background: Processed electroencephalography (EEG) is used to monitor the level of anesthesia, and it has shown the potential to predict the occurrence of delirium. While emergence trajectories of relative EEG band power identified post hoc show promising results in predicting a risk for a delirium, they are not easily transferable into an online predictive application. This article describes a low-resource and easily applicable method to differentiate between patients at high risk and low risk for delirium, with patients at low risk expected to show decreasing EEG power during emergence.

View Article and Find Full Text PDF

Background: An optimized anesthesia monitoring using electroencephalographic (EEG) information in the elderly could help to reduce the incidence of postoperative complications. Processed EEG information that is available to the anesthesiologist is affected by the age-induced changes of the raw EEG. While most of these methods indicate a "more awake" patient with age, the permutation entropy (PeEn) has been proposed as an age-independent measure.

View Article and Find Full Text PDF

Background: Devices monitoring the hypnotic component of general anesthesia can help to guide anesthetic management. The main purposes of these devices are the titration of anesthesia dose. While anesthesia at low doses can result in awareness with intraoperative memory formation, excessive administration of anesthetics may be associated with an increased risk of postoperative neurocognitive disorder.

View Article and Find Full Text PDF

Study Objective: To estimate the incidence of unwanted spontaneous responsiveness and burst suppression (BSupp) in patients undergoing state entropy (SE) and surgical pleth index (SPI)-guided total intravenous anesthesia (TIVA) with target-controlled infusion (TCI).

Design: Observational, prospective, single-center study.

Settings: Operating room.

View Article and Find Full Text PDF

Despite ongoing research efforts and routine clinical use, the neuronal mechanisms underlying the anesthesia-induced loss of consciousness are still under debate. Unlike most anesthetics, ketamine increases thalamic and cortical activity. Ketamine is considered to act a NMDA-receptor antagonism-mediated reduction of inhibition, i.

View Article and Find Full Text PDF

Dexmedetomidine is a selective α-adrenoceptor agonist and appears to disinhibit endogenous sleep-promoting pathways, as well as to attenuate noradrenergic excitation. Recent evidence suggests that dexmedetomidine might also directly inhibit hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We analyzed the effects of dexmedetomidine on native HCN channel function in thalamocortical relay neurons of the ventrobasal complex of the thalamus from mice, performing whole-cell patch-clamp recordings.

View Article and Find Full Text PDF

Study Objective: Postoperative neurocognitive disorders (PND) are common complications after surgery under general anesthesia. In our aging society the incidence of PND will increase. Hence, interdisciplinary efforts should be taken to minimize the occurrence of PND.

View Article and Find Full Text PDF

Background: Interprofessional simulation based education (IPSBE) programs positively impact participants' attitudes towards interprofessional collaboration and learning. However, the extent to which students in different health professions benefit and the underlying reasons for this are subject of ongoing debate.

Methods: We developed a 14-h IPSBE course with scenarios of critical incidents or emergency cases.

View Article and Find Full Text PDF

Background: Intraoperative patient monitoring using the electroencephalogram (EEG) can help to adequately adjust the anesthetic level. Therefore, the processed EEG (pEEG) provides the anesthesiologist with the estimated anesthesia level. The commonly used approaches track the changes from a fast- and a low-amplitude EEG during wakefulness to a slow- and a high-amplitude EEG under general anesthesia.

View Article and Find Full Text PDF

Study Objective: In the upcoming years there will be a growing number of elderly patients requiring general anaesthesia. As age is an independent risk factor for postoperative delirium (POD) the incidence of POD will increase concordantly. One approach to reduce the risk of POD would be to avoid excessively high doses of anaesthetics by using neuromonitoring to guide anaesthesia titration.

View Article and Find Full Text PDF

As thalamocortical relay neurons are ascribed a crucial role in signal propagation and information processing, they have attracted considerable attention as potential targets for anesthetic modulation. In this study, we analyzed the effects of different concentrations of sevoflurane on the excitability of thalamocortical relay neurons and hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels, which play a decisive role in regulating membrane properties and rhythmic oscillatory activity. The effects of sevoflurane on single-cell excitability and native HCN channels were investigated in acutely prepared brain slices from adult wild-type mice with the whole-cell patch-clamp technique, using voltage-clamp and current-clamp protocols.

View Article and Find Full Text PDF

Electroencephalographic (EEG) Burst Suppression (BSUPP) is a discontinuous pattern characterized by episodes of low voltage disrupted by bursts of cortical synaptic activity. It can occur while delivering high-dose anesthesia. Current research suggests an association between BSUPP and the occurrence of postoperative delirium in the post-anesthesia care unit (PACU) and beyond.

View Article and Find Full Text PDF

Background: It is controversially discussed whether general anaesthesia increases the risk of Alzheimer's disease (AD) or accelerates its progression. One important factor in AD pathogenesis is the accumulation of soluble amyloid beta (Aβ) oligomers which affect N-methyl-d-aspartate (NMDA) receptor function and abolish hippocampal long-term potentiation (LTP). NMDA receptor antagonists, at concentrations allowing physiological activation, can prevent Aβ-induced deficits in LTP.

View Article and Find Full Text PDF

Background: Postoperative delirium may manifest in the immediate post-anaesthesia care period. Such episodes appear to be predictive of further episodes of inpatient delirium and associated adverse outcomes. Frontal electroencephalogram (EEG) findings of suppression patterns and low proprietary index values have been associated with postoperative delirium and poor outcomes.

View Article and Find Full Text PDF

Different anesthetic agents induce burst suppression in the electroencephalogram (EEG) at very deep levels of general anesthesia. EEG burst suppression has been identified to be a risk factor for postoperative delirium (POD). EEG based automated detection algorithms are used to detect burst suppression patterns during general anesthesia and a burst suppression ratio (BSR) is calculated.

View Article and Find Full Text PDF

The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated.

View Article and Find Full Text PDF