Publications by authors named "Stephan Kong"

The nuclear-encoded species cytoplasm specific (scs) genes control nuclear-cytoplasmic compatibility in wheat (genus Triticum). Alloplasmic cells, which have nucleus and cytoplasm derived from different species, produce vigorous and vital organisms only when the correct version of scs is present in their nucleus. In this study, bulks of in vivo radiation hybrids segregating for the scs phenotype have been genotyped by sequencing with over 1.

View Article and Find Full Text PDF

Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity.

View Article and Find Full Text PDF

Background: Bread wheat is one of the world's most important food crops and considerable efforts have been made to develop genomic resources for this species. This includes an on-going project by the International Wheat Genome Sequencing Consortium to assemble its large and complex genome, which is hexaploid and contains three closely related 'homoeologous' copies for each chromosome. This multi-national effort avoids the complications polyploidy entails for correct assembly of the genome by sequencing flow-sorted chromosome arms one at a time.

View Article and Find Full Text PDF

The accurate identification of medicinal plants is becoming increasingly important due to reported concerns about purity, quality and safety. The previously developed prototype subtracted diversity array (SDA) had been validated for the ability to distinguish clade-level targets in a phylogenetically accurate manner. This study represents the rigorous investigation of the SDA for genotyping capabilities, including the genotyping of plant species not included during the construction of the SDA, as well as to lower classification levels including family and species.

View Article and Find Full Text PDF

Until recently, the identification of plants relied on conventional techniques, such as morphological, anatomical and chemical profiling, that are often inefficient or unfeasible in certain situations. Extensive literature exists describing the use of polymerase chain reaction (PCR) DNA-based identification techniques, which offer a reliable platform, but their broad application is often limited by a low throughput. However, hybridization-based microarray technology represents a rapid and high-throughput tool for genotype identification at a molecular level.

View Article and Find Full Text PDF