The present work reports on the multiaxial region and orientation-dependent mechanical properties of two porcine wrap-around tendons under tensile, compressive and combined loads based on an extensive study with n=175 samples. The results provide a detailed dataset of the anisotropic tensile and compressive longitudinal properties and document a pronounced tension-compression asymmetry. Motivated by the physiological loading conditions of these tendons, which include transversal compression at bony abutments in addition to longitudinal tension, we systematically investigated the change in axial tension when the tendon is compressed transversally along one or both perpendicular directions.
View Article and Find Full Text PDFSkeletal muscle tissue shows a clear asymmetry with regard to the passive stresses under tensile and compressive deformation, referred to as tension-compression asymmetry (TCA). The present study is the first one reporting on TCA at different length scales, associated with muscle tissue and muscle fibres, respectively. This allows for the first time the comparison of TCA between the tissue and one of its individual components, and thus to identify the length scale at which this phenomenon originates.
View Article and Find Full Text PDFThis paper reports the first comprehensive data set on the anisotropic mechanical properties of isolated endo- and perimysial extracellular matrix of skeletal muscle, and presents the corresponding protocols for preparing and testing the samples. In particular, decellularisation of porcine skeletal muscle is achieved with caustic soda solution, and mechanical parameters are defined based on compressive and tensile testing in order to identify the optimal treatment time such that muscle fibres are dissolved whereas the extracellular matrix remains largely intact and mechanically functional. At around 18 h, a time window was found and confirmed by histology, in which axial tensile experiments were performed to characterise the direction-dependent mechanical response of the extracellular matrix samples, and the effect of lateral pre-compression was studied.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2020
In the present work, mechano-geometrical characterisations of skeletal muscle fibres in two different deformation states, namely, axial tension and axial compression, were realised. In both cases, cyclic and relaxation tests were performed. Additionally, the changes in the volume of the fibres during deformation were recorded to obtain more detailed information about the muscle fibre load transfer mechanisms.
View Article and Find Full Text PDF