The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed.
View Article and Find Full Text PDFRev Sci Instrum
September 2008
Optical profilers are valuable tools for the characterization of microelectromechanical systems (MEMSs). They use phase sifting interferometry (PSI) or vertical scanning interferometry to measure the topography of microscale structures with nanometer resolution. However, for many emerging MEMS applications, the sample needs to be imaged while placed in a liquid or in a package with a glass window.
View Article and Find Full Text PDFWhile microcantilevers offer exciting opportunities for mechano-detection, they often suffer from limitations in either sensitivity or selectivity. To address these limitations, we electrodeposited a chitosan film onto a cantilever surface and mechano-transduced detection events through the chitosan network. Our first demonstration was the detection of nucleic acid hybridization.
View Article and Find Full Text PDFWe report a new approach for microfluidic optical bioanalysis that is based on the electrically driven assembly of bio-components on a transparent sidewall and the optical detection of the assembled components using planar waveguides. This allows localized electrical signals for bio-assembly and optical signals for bio-detection that can easily be applied in MEMS systems. We demonstrate a BioMEMS design incorporating this scheme and its output signal when using fluorescent detection.
View Article and Find Full Text PDF