The on-surface synthesis of covalent organic nanosheets driven by reactive metal surfaces leads to strongly adsorbed organic nanostructures, which conceals their intrinsic properties. Hence, reducing the electronic coupling between the organic networks and commonly used metal surfaces is an important step towards characterization of the true material. We demonstrate that post-synthetic exposure to iodine vapor leads to the intercalation of an iodine monolayer between covalent polyphenylene networks and Ag(111) surfaces.
View Article and Find Full Text PDFThe objective of this work is to study both the dynamics and mechanisms of guest incorporation into the pores of 2D supramolecular host networks at the liquid-solid interface. This was accomplished by adding molecular guests to prefabricated self-assembled porous monolayers and the simultaneous acquisition of scanning tunneling microscopy (STM) topographs. The incorporation of the same guest molecule (coronene) into two different host networks was compared, where the pores of the networks either featured a perfect geometric match with the guest (for trimesic acid host networks) or were substantially larger than the guest species (for benzenetribenzoic acid host networks).
View Article and Find Full Text PDFThe on surface synthesis of a two-dimensional (2D) covalent organic framework from a halogenated aromatic monomer under ultra-high vacuum conditions is shown to be dependent on the choice of substrate.
View Article and Find Full Text PDF