Disease-modifying therapies for Alzheimer's disease (AD) are likely to be most beneficial when initiated in the presymptomatic phase. To track the benefit of such interventions, fluid biomarkers are of great importance, with neurofilament light chain protein (NfL) showing promise for monitoring neurodegeneration and predicting cognitive outcomes. Here, we update and complement previous findings from the Dominantly Inherited Alzheimer Network Observational Study by using matched cross-sectional and longitudinal cerebrospinal fluid (CSF) and plasma samples from 567 individuals, allowing timely comparative analyses of CSF and blood trajectories across the entire disease spectrum.
View Article and Find Full Text PDFBrain Aβ deposition is a key early event in the pathogenesis of Alzheimer´s disease (AD), but the long presymptomatic phase and poor correlation between Aβ deposition and clinical symptoms remain puzzling. To elucidate the dependency of downstream pathologies on Aβ, we analyzed the trajectories of cerebral Aβ accumulation, Aβ seeding activity, and neurofilament light chain (NfL) in the CSF (a biomarker of neurodegeneration) in Aβ-precursor protein transgenic mice. We find that Aβ deposition increases linearly until it reaches an apparent plateau at a late age, while Aβ seeding activity increases more rapidly and reaches a plateau earlier, coinciding with the onset of a robust increase of CSF NfL.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2022
Background: Diffuse gliomas are the most common malignant tumors of the central nervous system with poor treatment efficacy. Infiltration of immune cells into tumors during immunosurveillance is observed in multiple tumor entities and often associated with a favorable outcome. The aim of this study was to evaluate the infiltration of immune cells in gliomas and their association with cerebrospinal fluid (CSF) cytokine concentrations.
View Article and Find Full Text PDFNeurofilament light chain (NfL) has emerged as a promising blood biomarker for the progression of various neurological diseases. NfL is a structural protein of nerve cells, and elevated NfL levels in blood are thought to mirror damage to the nervous system. We find that plasma NfL levels increase in humans with age (n = 122; 21-107 years of age) and correlate with changes in other plasma proteins linked to neural pathways.
View Article and Find Full Text PDFAmyloid-β (Aβ) deposits are a relatively late consequence of Aβ aggregation in Alzheimer's disease. When pathogenic Aβ seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aβ seeds before Aβ deposition becomes detectable in Aβ precursor protein-transgenic mice.
View Article and Find Full Text PDFMutations in pitrilysin metallopeptidase 1 (PITRM1), a mitochondrial protease involved in mitochondrial precursor processing and degradation, result in a slow-progressing syndrome characterized by cerebellar ataxia, psychotic episodes, and obsessive behavior, as well as cognitive decline. To investigate the pathogenetic mechanisms of mitochondrial presequence processing, we employed cortical neurons and cerebral organoids generated from PITRM1-knockout human induced pluripotent stem cells (iPSCs). PITRM1 deficiency strongly induced mitochondrial unfolded protein response (UPR) and enhanced mitochondrial clearance in iPSC-derived neurons.
View Article and Find Full Text PDFWith molecular treatments coming into reach for spinocerebellar ataxia type 3 (SCA3), easily accessible, cross-species validated biomarkers for human and preclinical trials are warranted, particularly for the preataxic disease stage. We assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in ataxic and preataxic subjects of two independent multicentric SCA3 cohorts and in a SCA3 knock-in mouse model. Ataxic SCA3 subjects showed increased levels of both NfL and pNfH.
View Article and Find Full Text PDFObjective: Clinical trials targeting β-amyloid peptides (Aβ) for Alzheimer disease (AD) failed for arguable reasons that include selecting the wrong stages of AD pathophysiology or Aβ being the wrong target. Targeting Aβ to prevent cerebral amyloid angiopathy (CAA) has not been rigorously followed, although the causal role of Aβ for CAA and related hemorrhages is undisputed. CAA occurs with normal aging and to various degrees in AD, where its impact and treatment is confounded by the presence of parenchymal Aβ deposition.
View Article and Find Full Text PDFNeurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.
View Article and Find Full Text PDFThe molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain.
View Article and Find Full Text PDFLittle is known about the extent to which pathogenic factors drive the development of Alzheimer's disease (AD) at different stages of the long preclinical and clinical phases. Given that the aggregation of the β-amyloid peptide (Aβ) is an important factor in AD pathogenesis, we asked whether Aβ seeds from brain extracts of mice at different stages of amyloid deposition differ in their biological activity. Specifically, we assessed the effect of age on Aβ seeding activity in two mouse models of cerebral Aβ amyloidosis (APPPS1 and APP23) with different ages of onset and rates of progression of Aβ deposition.
View Article and Find Full Text PDFIntroduction: The inhibition of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a main therapeutic approach for the treatment of Alzheimer's disease (AD). We previously reported an age-related increase of tau protein in the cerebrospinal fluid (CSF) of amyloid β (Aβ) precursor protein (APP) transgenic mice.
Methods: APP transgenic mice were treated with a potent BACE1 inhibitor.
A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis.
View Article and Find Full Text PDFUnlabelled: The aggregation of amyloid-β peptide (Aβ) in brain is an early event and hallmark of Alzheimer's disease (AD). We combined the advantages of in vitro and in vivo approaches to study cerebral β-amyloidosis by establishing a long-term hippocampal slice culture (HSC) model. While no Aβ deposition was noted in untreated HSCs of postnatal Aβ precursor protein transgenic (APP tg) mice, Aβ deposition emerged in HSCs when cultures were treated once with brain extract from aged APP tg mice and the culture medium was continuously supplemented with synthetic Aβ.
View Article and Find Full Text PDFAltered progranulin levels play a major role in neurodegenerative diseases, like Alzheimer's dementia (AD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), even in the absence of GRN mutations. Increasing progranulin levels could hereby provide a novel treatment strategy. However, knowledge on progranulin regulation in neurodegenerative diseases remains limited.
View Article and Find Full Text PDFCerebral β-amyloidosis is induced by inoculation of Aβ seeds into APP transgenic mice, but not into App(-/-) (APP null) mice. We found that brain extracts from APP null mice that had been inoculated with Aβ seeds up to 6 months previously still induced β-amyloidosis in APP transgenic hosts following secondary transmission. Thus, Aβ seeds can persist in the brain for months, and they regain propagative and pathogenic activity in the presence of host Aβ.
View Article and Find Full Text PDFHereditary Cystatin C Amyloid Angiopathy (HCCAA) is an amyloid disorder in Icelandic families caused by an autosomal dominant mutation in the cystatin C gene. Mutant cystatin C forms amyloid deposits in brain arteries and arterioles which are associated with changes in the arterial wall structure, notably deposition of extracellular matrix proteins. In this post-mortem study we examined the neuroinflammatory response relative to the topographical distribution of cystatin C deposition, and associated haemorrhages, in the leptomeninges, cerebrum, cerebellum, thalamus, and midbrain of HCCAA patients.
View Article and Find Full Text PDFAbnormalities in brains of Alzheimer's disease (AD) patients are thought to start long before the first clinical symptoms emerge. The identification of affected individuals at this 'preclinical AD' stage relies on biomarkers such as decreased levels of the amyloid-β peptide (Aβ) in the cerebrospinal fluid (CSF) and positive amyloid positron emission tomography scans. However, there is little information on the longitudinal dynamics of CSF biomarkers, especially in the earliest disease stages when therapeutic interventions are likely most effective.
View Article and Find Full Text PDFThe soluble fraction of brain samples from patients with Alzheimer's disease contains highly biologically active amyloid-β seeds. In this study, we sought to assess the potency of soluble amyloid-β seeds derived from the brain and cerebrospinal fluid. Soluble Alzheimer's disease brain extracts were serially diluted and then injected into the hippocampus of young, APP transgenic mice.
View Article and Find Full Text PDFThe polymorphic β-amyloid lesions present in individuals with Alzheimer's disease are collectively known as cerebral β-amyloidosis. Amyloid precursor protein (APP) transgenic mouse models similarly develop β-amyloid depositions that differ in morphology, binding of amyloid conformation-sensitive dyes, and Aβ40/Aβ42 peptide ratio. To determine the nature of such β-amyloid morphotypes, β-amyloid-containing brain extracts from either aged APP23 brains or aged APPPS1 brains were intracerebrally injected into the hippocampus of young APP23 or APPPS1 transgenic mice.
View Article and Find Full Text PDFHereditary Cystatin C Amyloid Angiopathy (HCCAA) is a rare genetic disease in Icelandic families caused by a mutation in the cystatin C gene, CST3. HCCAA is classified as a cerebral amyloid angiopathy and mutant cystatin C forms amyloid deposits in cerebral arteries resulting in fatal haemorrhagic strokes in young adults. The aetiology of HCCAA pathology is not clear and there is, at present, no animal model of the disease.
View Article and Find Full Text PDFAltered concentrations of amyloid-β (Aβ) peptide and Tau protein in the cerebrospinal fluid (CSF) are thought to be predictive markers for Alzheimer's disease (AD). Transgenic mice overexpressing human amyloid precursor protein (APP) have been used to model Aβ pathology, but concomitant changes in Aβ and Tau in CSF have been less well studied. We measured Aβ and Tau in the brains and CSF of two well-characterized transgenic mouse models of AD: one expressing human APP carrying the Swedish mutation (APP23) and the other expressing mutant human APP and mutant human presenilin-1 (APPPS1).
View Article and Find Full Text PDF