Publications by authors named "Stephan J Hug"

Arsenic (As) is a toxic element, and elevated levels of geogenic As in drinking water pose a threat to the health of several hundred million people worldwide. In this study, we used microfluidics in combination with optical microscopy and X-ray spectroscopy to investigate zerovalent iron (ZVI) corrosion, secondary iron (Fe) phase formation, and As retention processes at the pore scale in ZVI-based water treatment filters. Two 250 μm thick microchannels filled with single ZVI and quartz grain layers were operated intermittently (12 h flow/12 h no-flow) with synthetic groundwater (pH 7.

View Article and Find Full Text PDF

Household sand filters (SFs) are widely applied to remove iron (Fe), manganese (Mn), arsenic (As), and ammonium (NH) from groundwater in the Red River delta, Vietnam. Processes in the filters probably include a combination of biotic and abiotic reactions. However, there is limited information on the microbial communities treating varied groundwater compositions and on whether biological oxidation of Fe(II), Mn(II), As(III), and NH contributes to the overall performance of SFs.

View Article and Find Full Text PDF

Rare Earth Elements (REEs) are used in increasing amounts in technical applications and consumer products. However, to date, the contribution of industrial sources to the loads of individual REEs in wastewater streams have not been quantified. Here, we determine the REE contents in sludge collected from 63 wastewater treatment plants (WWTPs) across Switzerland.

View Article and Find Full Text PDF
Article Synopsis
  • Poor solubility of iron(hydr)oxides limits growth in microorganisms and plants, prompting research into how light affects iron dissolution in various environments.
  • Short UV-A illuminations (5-15 min) can significantly enhance the dissolution of iron(hydr)oxides during subsequent dark periods, especially under anoxic conditions, showing a 10-40 fold increase in dissolution rates.
  • In oxic conditions, the presence of photostable ligands like DFOB keeps dissolved iron(III) in solution longer, but the overall enhancement of iron bioavailability is more pronounced in anoxic environments following brief light exposure.
View Article and Find Full Text PDF

In the lowlands of Nepal (Terai), the WHO drinking water guideline concentration of 10 μg/L for arsenic (As) is frequently exceeded. Since their introduction in 2006, iron-assisted bio-sand filters (Kanchan filters) are widely used to treat well water in Nepal. The filters are constructed on the basis of As-removal with corroding zero-valent iron (ZVI), with water flowing through a filter bed of iron nails placed above a sand filter.

View Article and Find Full Text PDF

Groundwater is a much safer and more dependable source of drinking water than surface water. However, natural (geogenic) hazardous elements can contaminate groundwater and lead to severe health problems in consumers. Arsenic concentrations exceeding the WHO drinking water guideline of 10 μg/L globally affect over 220 million people and can cause arsenicosis (skin lesions and cancers).

View Article and Find Full Text PDF

Groundwater contaminated with geogenic arsenic (As) is frequently used as drinking water in Burkina Faso, despite adverse health effects. This study focused on testing low-cost filter systems based on zero-valent iron (ZVI), which have not yet been explored in West Africa for As removal. The active ZVI bed was constructed using small-sized iron nails, embedded between sand layers.

View Article and Find Full Text PDF

Mercury (Hg) pollution threatens ecosystems and human health. Wastewater treatment plants (WWTPs) play a key role in limiting Hg discharges from wastewaters to rivers and lakes, but large-scale studies to estimate Hg loads and discharge at national levels are scarce. We assessed the concentration, flux, speciation, and removal of Hg in municipal wastewater throughout Switzerland by investigating 64 WWTPs in a pre-study and a subset of 28 WWTPs in the main study.

View Article and Find Full Text PDF
Article Synopsis
  • The dissolution of iron (Fe(III)) phases is crucial for making iron and trace elements available for biological use, and Fe(II) significantly speeds up this process at near-neutral pH levels.
  • Researchers conducted experiments on lepidocrocite (Lp) and goethite (Gt) to study how the addition of desferrioxamine-B (DFOB) influenced the dissolution and isotope exchange of these iron compounds.
  • The timing of when Fe(II) and DFOB were added affected the outcomes, with findings indicating that Fe(II) enhances the dissolution rate and charge transfer between dissolved and adsorbed species, particularly with Lp, which can accelerate the process by up to 60 times.
View Article and Find Full Text PDF

Iron(III)-precipitates formed by the oxidation of dissolved Fe(II) are important sorbents for major and trace elements in aquatic and terrestrial systems. Their reductive dissolution in turn may result in the release of associated elements. We examined the reductive dissolution kinetics of an environmentally relevant set of Fe(II)-derived arsenate-containing Fe(III)-precipitates whose structure as function of phosphate (P) and silicate (Si) content varied between poorly-crystalline lepidocrocite, amorphous Fe(III)-phosphate, and Si-containing ferrihydrite.

View Article and Find Full Text PDF

Dissolution of iron(III)phases is a key process in soils, surface waters, and the ocean. Previous studies found that traces of Fe(II) can greatly increase ligand controlled dissolution rates at acidic pH, but the extent that this also occurs at circumneutral pH and what mechanisms are involved are not known. We addressed these questions with infrared spectroscopy and Fe isotope exchange experiments with lepidocrocite (Lp) and 50 μM ethylenediaminetetraacetate (EDTA) at pH 6 and 7.

View Article and Find Full Text PDF
Article Synopsis
  • Siderophores, which are Fe-specific biogenic ligands, play a crucial role in acquiring iron from Fe(III) (hydr)oxide minerals in low-iron environments.
  • The study explored how redox reactions, specifically the addition of Fe(II) as a reductant, influence the dissolution of these minerals when using different ligands like desferrioxamine B (DFOB) and HBED.
  • Results showed that even low levels of Fe(II) greatly increased the dissolution rates of Fe(III) (hydr)oxides, particularly with HBED and goethite, highlighting the potential importance of this process in biological iron acquisition, especially in conditions where iron is deficient.
View Article and Find Full Text PDF

As widely known, in several countries in South East Asia, arsenic concentrations in ground water extracted from Quaternary alluvial sediments frequently exceed the World Health Organization (WHO) drinking water guideline of 10 μg/L. The broadly accepted hypothesis states that reductive dissolution of Fe-bearing minerals releases As-oxyanions contained within these minerals. According to the results presented in this article, As and Fe concentrations in ground water in the lowlands (Terai) of Nepal are highly variable as a function of location and there is a de-coupling of As and Fe concentrations resulting in a loss of correlation between these two elements.

View Article and Find Full Text PDF

In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (AsS O with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples.

View Article and Find Full Text PDF

Long-term changes of 14 water constituents measured in continuously and water discharge proportionally collected samples of four Swiss rivers over a period of 39 years are analyzed using several statistical techniques. Possible drivers and causes for the identified trends and shifts are explained by consideration of catchment characteristics and anthropogenic activities. Water temperatures increased by 0.

View Article and Find Full Text PDF

The co-precipitation of arsenate (As(V)) with Fe(III)-precipitates is of great importance in water treatment and critically affects the fate of As in environmental systems. We studied the effects of dissolved phosphate (P; 0-1 mM), silicate (Si; 0 or 0.5 mM) and Ca (0, 0.

View Article and Find Full Text PDF

The number and quantities of trace elements used in industry, (high-tech) consumer products, and medicine are rapidly increasing, but the resulting emissions and waste streams are largely unknown. We assessed the concentrations of 69 elements in digested sewage sludge and effluent samples from 64 municipal wastewater treatment plants as well as in major rivers in Switzerland. This data set, representative of an entire industrialized country, presents a reference point for current element concentrations, average per-capita fluxes, loads discharged to surface waters, and economic waste-stream values.

View Article and Find Full Text PDF

The oxidation and removal of As(III) by commercially available micro-scale zero-valent iron (mZVI) was studied in aerated synthetic groundwater with initially 6.7 μM As(III) at neutral pH values. Batch experiments were performed to investigate the influence of ZVI and H2O2 concentrations on As(III) oxidation and removal.

View Article and Find Full Text PDF

As part of a trans-disciplinary research project, a series of surveys and interventions were conducted in different arsenic-affected regions of rural Bangladesh. Surveys of institutional stakeholders identified deep tubewells and piped water systems as the most preferred options, and the same preferences were found in household surveys of populations at risk. Psychological surveys revealed that these two technologies were well-supported by potential users, with self-efficacy and social norms being the principal factors driving behavior change.

View Article and Find Full Text PDF

Colloidal mineral-phases play an important role in the adsorption, transport and transformation of organic and inorganic compounds in the atmosphere and in aqueous environments. Artificial UV-light and sunlight can induce electron transfer reactions between metal ions of the solid phases and adsorbed compounds, leading to their transformation and degradation. To investigate different possible photo-induced oxidation pathways of dicarboxylates adsorbed on iron(III)(hydr)oxide surfaces, we followed UV-A induced photoreactions of oxalate, malonate, succinate and their corresponding α-hydroxy analogues tartronate and malate with in situ ATR-FTIR spectroscopy in immersed particle layers of lepidocrocite, goethite, maghemite and hematite at pH 4.

View Article and Find Full Text PDF

The main arsenic mitigation measures in Bangladesh, well-switching and deep tube wells, have reduced As exposure, but water treatment is important where As-free water is not available. Zero-valent iron (ZVI) based SONO household filters, developed in Bangladesh, remove As by corrosion of locally available inexpensive surplus iron and sand filtration in two buckets. We investigated As removal in SONO filters in the field and laboratory, covering a range of typical groundwater concentrations (in mg/L) of As (0.

View Article and Find Full Text PDF

In Bangladesh, irrigation of dry season rice (boro) with arsenic-contaminated groundwater is leading to increased As levels in soils and rice, and to concerns about As-induced yield reduction. Arsenic concentrations and speciation in soil porewater are strongly influenced by redox conditions, and thus by water management during rice growth. We studied the dynamics of As, Fe, P, Si, and other elements in porewater of a paddy field near Sreenagar (Munshiganj), irrigated according to local practice, in which flooding was intermittent.

View Article and Find Full Text PDF

Groundwater rich in arsenic (As) is extensively used for dry season boro rice cultivation in Bangladesh, leading to long-term As accumulation in soils. This may result in increasing levels of As in rice straw and grain, and eventually, in decreasing rice yields due to As phytotoxicity. In this study, we investigated the As contents of rice straw and grain over three consecutive harvest seasons (2005-2007) in a paddy field in Munshiganj, Bangladesh, which exhibits a documented gradient in soil As caused by annual irrigation with As-rich groundwater since the early 1990s.

View Article and Find Full Text PDF

Shallow groundwater, often rich in arsenic (As), is widely used for irrigation of dry season boro rice in Bangladesh. In the long term, this may lead to increasing As contents in rice paddy soils, which threatens rice yields, food quality, and human health. The objective of this study was to quantify gains and losses of soil As in a rice paddy field during irrigation and monsoon flooding over a three-year period.

View Article and Find Full Text PDF

Photoreductive dissolution of lepidocrocite (gamma-FeOOH) in the presence/absence of the siderophore desferrioxamine B (DFOB) was investigated at different wavelengths. At pH 3 in the absence of DFOB, Fe(II) formation rates normalized to the photon flux increased with decreasing wavelengths below 515 nm, consistent with enhanced Fe(II) formation at lower wavelengths by photolysis of surface Fe(III)-hydroxo groups or by surface scavenging of photoelectrons generated in the semiconducting bulk. In the presence of DFOB at pH 3, photoreductive dissolution rates, normalized to the photon flux, increased more strongly with decreasing wavelengths below 440 nm.

View Article and Find Full Text PDF