Brain atlas construction has attracted significant attention lately in the neuroimaging community due to its application to the characterization of neuroanatomical shape abnormalities associated with various neurodegenerative diseases or neuropsychiatric disorders. Existing shape atlas construction techniques usually focus on the analysis of a single anatomical structure in which the important inter-structural information is lost. This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas based on an information geometry framework.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2011
This paper presents a novel segmentation algorithm which automatically learns the combination of weak segmenters and builds a strong one based on the assumption that the locally weighted combination varies w.r.t.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2010
This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas using an information geometry framework. A shape complex is a collection of shapes in a local neighborhood. We represent the boundary of the entire shape complex using the zero level set of a distance function S(x).
View Article and Find Full Text PDFThis paper presents a novel and robust technique for group-wise registration of point sets with unknown correspondence. We begin by defining a Havrda-Charvát (HC) entropy valid for cumulative distribution functions (CDFs) which we dub the HC Cumulative Residual Entropy (HC-CRE). Based on this definition, we propose a new measure called the CDF-HC divergence which is used to quantify the dis-similarity between CDFs estimated from each point-set in the given population of point sets.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2008
Groupwise registration of a set of shapes represented by unlabeled point sets is a challenging problem since, usually, this involves solving for point correspondence in a nonrigid motion setting. In this paper, we propose a novel and robust algorithm that is capable of simultaneously computing the mean shape, represented by a probability density function, from multiple unlabeled point sets(represented by finite-mixture models), and registering them nonrigidly to this emerging mean shape. This algorithm avoids the correspondence problem by minimizing the Jensen-Shannon (JS) divergence between the point sets represented as finite mixtures of Gaussian densities.
View Article and Find Full Text PDFRationale And Objectives: Segmentation of anatomic structures from magnetic resonance brain scans can be a daunting task because of large inhomogeneities in image intensities across an image and possible lack of precisely defined shape boundaries for certain anatomical structures. One approach that has been quite popular in the recent past for these situations is the atlas-based segmentation. The atlas, once constructed, can be used as a template and can be registered nonrigidly to the image being segmented thereby achieving the desired segmentation.
View Article and Find Full Text PDF